




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省深圳高級中學2024年中考考前最后一卷數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一個正方形花壇的面積為7m2,其邊長為am,則a的取值范圍為()A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<42.設α,β是一元二次方程x2+2x-1=0的兩個根,則αβ的值是()A.2B.1C.-2D.-13.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,4.如圖,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使△ADC與△BDA相似,可以添加一個條件.下列添加的條件中錯誤的是()A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD5.為了解中學300名男生的身高情況,隨機抽取若干名男生進行身高測量,將所得數據整理后,畫出頻數分布直方圖(如圖).估計該校男生的身高在169.5cm~174.5cm之間的人數有()A.12 B.48 C.72 D.966.如果將直線l1:y=2x﹣2平移后得到直線l2:y=2x,那么下列平移過程正確的是()A.將l1向左平移2個單位 B.將l1向右平移2個單位C.將l1向上平移2個單位 D.將l1向下平移2個單位7.如圖,△ABC中,若DE∥BC,EF∥AB,則下列比例式正確的是()A. B.C. D.8.如圖,在平面直角坐標系中,已知點A(―3,6)、B(―9,一3),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應點A′的坐標是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)9.下列計算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y610.如圖,將△ABC沿DE,EF翻折,頂點A,B均落在點O處,且EA與EB重合于線段EO,若∠DOF=142°,則∠C的度數為()A.38° B.39° C.42° D.48°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,圓O的直徑AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的長為________.12.因式分解:_________________.13.2的平方根是_________.14.如圖,與是以點為位似中心的位似圖形,相似比為,,,若點的坐標是,則點的坐標是__________.15.如圖,有一塊邊長為4的正方形塑料模板ABCD,將一塊足夠大的直角三角板的直角頂點落在A點,兩條直角邊分別與CD交于點F,與CB延長線交于點E.則四邊形AECF的面積是.16.如圖是矗立在高速公路水平地面上的交通警示牌,經測量得到如下數據:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為_米.(結果精確到0.1米,參考數據:2≈1.41,3≈1.73)17.如圖,在ABCD中,AB=8,P、Q為對角線AC的三等分點,延長DP交AB于點M,延長MQ交CD于點N,則CN=__________.三、解答題(共7小題,滿分69分)18.(10分)如圖1,的余切值為2,,點D是線段上的一動點(點D不與點A、B重合),以點D為頂點的正方形的另兩個頂點E、F都在射線上,且點F在點E的右側,聯結,并延長,交射線于點P.(1)點D在運動時,下列的線段和角中,________是始終保持不變的量(填序號);①;②;③;④;⑤;⑥;(2)設正方形的邊長為x,線段的長為y,求y與x之間的函數關系式,并寫出定義域;(3)如果與相似,但面積不相等,求此時正方形的邊長.19.(5分)解不等式組:,并把解集在數軸上表示出來.20.(8分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結AE、BF.求證:(1)AE=BF;(2)AE⊥BF.21.(10分)如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.求證:∠1=∠2;連結BE、DE,判斷四邊形BCDE的形狀,并說明理由.22.(10分)如圖1,三個正方形ABCD、AEMN、CEFG,其中頂點D、C、G在同一條直線上,點E是BC邊上的動點,連結AC、AM.(1)求證:△ACM∽△ABE.(2)如圖2,連結BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.23.(12分)如圖,在平面直角坐標系中,圓M經過原點O,直線與x軸、y軸分別相交于A,B兩點.(1)求出A,B兩點的坐標;(2)若有一拋物線的對稱軸平行于y軸且經過點M,頂點C在圓M上,開口向下,且經過點B,求此拋物線的函數解析式;(3)設(2)中的拋物線交軸于D、E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.24.(14分)如圖,在直角坐標系中△ABC的A、B、C三點坐標A(7,1)、B(8,2)、C(9,0).(1)請在圖中畫出△ABC的一個以點P(12,0)為位似中心,相似比為3的位似圖形△A′B′C′(要求與△ABC同在P點一側),畫出△A′B′C′關于y軸對稱的△A′'B′'C′';(2)寫出點A'的坐標.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
先根據正方形的面積公式求邊長,再根據無理數的估算方法求取值范圍.【詳解】解:∵一個正方形花壇的面積為,其邊長為,則a的取值范圍為:.故選:C.【點睛】此題重點考查學生對無理數的理解,會估算無理數的大小是解題的關鍵.2、D【解析】試題分析:∵α、β是一元二次方程x2+2x-1=0的兩個根,∴αβ=考點:根與系數的關系.3、D【解析】
先將方程左邊提公因式x,解方程即可得答案.【詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.【點睛】本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當的方法是解題關鍵.4、D【解析】
解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A選項正確;∵AD=DE,∴,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B選項正確;∵AD2=BD?CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C選項正確;∵CD?AB=AC?BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是對應夾角,故D選項錯誤,故選:D.考點:1.圓周角定理2.相似三角形的判定5、C【解析】
解:根據圖形,身高在169.5cm~174.5cm之間的人數的百分比為:,∴該校男生的身高在169.5cm~174.5cm之間的人數有300×24%=72(人).故選C.6、C【解析】
根據“上加下減”的原則求解即可.【詳解】將函數y=2x﹣2的圖象向上平移2個單位長度,所得圖象對應的函數解析式是y=2x.故選:C.【點睛】本題考查的是一次函數的圖象與幾何變換,熟知函數圖象變換的法則是解答此題的關鍵.7、C【解析】
根據平行線分線段成比例定理找準線段的對應關系,對各選項分析判斷后利用排除法求解.【詳解】解:∵DE∥BC,∴=,BD≠BC,∴≠,選項A不正確;∵DE∥BC,EF∥AB,∴=,EF=BD,=,∵≠,∴≠,選項B不正確;∵EF∥AB,∴=,選項C正確;∵DE∥BC,EF∥AB,∴=,=,CE≠AE,∴≠,選項D不正確;故選C.【點睛】本題考查了平行線分線段成比例定理;熟練掌握平行線分線段成比例定理,在解答時尋找對應線段是關健.8、D【解析】
試題分析:方法一:∵△ABO和△A′B′O關于原點位似,∴△ABO∽△A′B′O且=.∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵點A(―3,6)且相似比為,∴點A的對應點A′的坐標是(―3×,6×),∴A′(-1,2).∵點A′′和點A′(-1,2)關于原點O對稱,∴A′′(1,―2).故答案選D.考點:位似變換.9、D【解析】
根據合并同類項的法則,積的乘方,完全平方公式,同底數冪的乘法的性質,對各選項分析判斷后利用排除法求解.【詳解】解:A、2x-x=x,錯誤;B、x2?x3=x5,錯誤;C、(m-n)2=m2-2mn+n2,錯誤;D、(-xy3)2=x2y6,正確;故選D.【點睛】考查了整式的運算能力,對于相關的整式運算法則要求學生很熟練,才能正確求出結果.10、A【解析】分析:根據翻折的性質得出∠A=∠DOE,∠B=∠FOE,進而得出∠DOF=∠A+∠B,利用三角形內角和解答即可.詳解:∵將△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.故選A.點睛:本題考查了三角形內角和定理、翻折的性質等知識,解題的關鍵是靈活運用這些知識解決問題,學會把條件轉化的思想,屬于中考常考題型.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題分析:因為OC=OA,所以∠ACO=,所以∠AOC=45°,又直徑垂直于弦,,所以CE=,所以CD=2CE=.考點:1.解直角三角形、2.垂徑定理.12、【解析】
提公因式法和應用公式法因式分解.【詳解】解:.故答案為:【點睛】本題考查因式分解,要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續分解因式.13、【解析】
直接根據平方根的定義求解即可(需注意一個正數有兩個平方根).【詳解】解:2的平方根是故答案為.【點睛】本題考查了平方根的定義.注意一個正數有兩個平方根,它們互為相反數;0的平方根是0;負數沒有平方根.14、(2,2)【解析】分析:首先解直角三角形得出A點坐標,再利用位似是特殊的相似,若兩個圖形與是以點為位似中心的位似圖形,相似比是k,上一點的坐標是則在中,它的對應點的坐標是或,進而求出即可.詳解:與是以點為位似中心的位似圖形,,,若點的坐標是,過點作交于點E.點的坐標為:與的相似比為,點的坐標為:即點的坐標為:故答案為:點睛:考查位似圖形的性質,熟練掌握位似圖形的性質是解題的關鍵.15、1【解析】
∵四邊形ABCD為正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它們都加上四邊形ABCF的面積,可得到四邊形AECF的面積=正方形的面積=1.16、2.9【解析】試題分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考點:解直角三角形.17、1【解析】
根據平行四邊形定義得:DC∥AB,由兩角對應相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的長.【詳解】∵四邊形ABCD是平行四邊形,∴DC∥AB,∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,∴△NQC∽△MQA,同理得:△DPC∽△MPA,∵P、Q為對角線AC的三等分點,∴,,設CN=x,AM=1x,∴,解得,x=1,∴CN=1,故答案為1.【點睛】本題考查了平行四邊形的性質和相似三角形的判定和性質,熟練掌握兩角對應相等,兩三角形相似的判定方法是關鍵.三、解答題(共7小題,滿分69分)18、(1)④⑤;(2);(3)或.【解析】
(1)作于M,交于N,如圖,利用三角函數的定義得到,設,則,利用勾股定理得,解得,即,,設正方形的邊長為x,則,,由于,則可判斷為定值;再利用得到,則可判斷為定值;在中,利用勾股定理和三角函數可判斷在變化,在變化,在變化;(2)易得四邊形為矩形,則,證明,利用相似比可得到y與x的關系式;(3)由于,與相似,且面積不相等,利用相似比得到,討論:當點P在點F點右側時,則,所以,當點P在點F點左側時,則,所以,然后分別解方程即可得到正方形的邊長.【詳解】(1)如圖,作于M,交于N,在中,∵,設,則,∵,∴,解得,∴,,設正方形的邊長為x,在中,∵,∴,∴,在中,,∴為定值;∵,∴,∴為定值;在中,,而在變化,∴在變化,在變化,∴在變化,所以和是始終保持不變的量;故答案為:④⑤(2)∵MN⊥AP,DEFG是正方形,∴四邊形為矩形,∴,∵,∴,∴,即,∴(3)∵,與相似,且面積不相等,∴,即,∴,當點P在點F點右側時,AP=AF+PF==,∴,解得,當點P在點F點左側時,,∴,解得,綜上所述,正方形的邊長為或.【點睛】本題考查了相似形綜合題:熟練掌握銳角三角函數的定義、正方形的性質和相似三角形的判定與性質.19、則不等式組的解集是﹣1<x≤3,不等式組的解集在數軸上表示見解析.【解析】
先求出不等式組中每一個不等式的解集,再求出它們的公共部分就是不等式組的解集.【詳解】解不等式①得:x>﹣1,解不等式②得:x≤3,則不等式組的解集是:﹣1<x≤3,不等式組的解集在數軸上表示為:.【點睛】本題考查了解一元一次不等式組,熟知確定解集的方法“同大取大,同小取小,大小小大中間找,大大小小無處找”是解題的關鍵.也考查了在數軸上表示不等式組的解集.20、見解析【解析】
(1)可以把要證明相等的線段AE,CF放到△AEO,△BFO中考慮全等的條件,由兩個等腰直角三角形得AO=BO,OE=OF,再找夾角相等,這兩個夾角都是直角減去∠BOE的結果,所以相等,由此可以證明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以證明AE⊥BF【詳解】解:(1)證明:在△AEO與△BFO中,∵Rt△OAB與Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延長AE交BF于D,交OB于C,則∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.21、(1)證明見解析;(2)四邊形BCDE是菱形,理由見解析.【解析】
(1)證明△ADC≌△ABC后利用全等三角形的對應角相等證得結論.(2)首先判定四邊形BCDE是平行四邊形,然后利用對角線垂直的平行四邊形是菱形判定菱形即可.【詳解】解:(1)證明:∵在△ADC和△ABC中,∴△ADC≌△ABC(SSS).∴∠1=∠2.(2)四邊形BCDE是菱形,理由如下:如答圖,∵∠1=∠2,DC=BC,∴AC垂直平分BD.∵OE=OC,∴四邊形DEBC是平行四邊形.∵AC⊥BD,∴四邊形DEBC是菱形.【點睛】考點:1.全等三角形的判定和性質;2.線段垂直平分線的性質;3.菱形的判定.22、(1)證明見解析;(2)證明見解析;(3)74.【解析】
(1)根據四邊形ABCD和四邊形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可證△ACM∽△ABE;(2)連結AC,由△ACM∽△ABE得∠ACM=∠B=90°,易證∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,FC=CE,得MF=BD,從而可以證明四邊形BFMD是平行四邊形;(3)根據S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【詳解】(1)證明:∵四邊形ABCD和四邊形AEMN都是正方形,∴,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)證明:連結AC因為△ACM∽△ABE,則∠ACM=∠B=90°,因為∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以點M,C,F在同一直線上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因為MC=BE,FC=CE,所以MF=BC=BD,所以四邊形BFMD是平行四邊形(3)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+26=74.【點睛】本題主要考查了正方形的性質的應用,解此題的關鍵是能正確作出輔助線,綜合性比較強,有一定的難度.23、(1)A(﹣8,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年環境監測智能化數據分析與應用案例報告
- 2025年教育平臺用戶增長策略優化:親子教育市場細分報告
- 地熱能源供暖項目可行性研究報告-以XX地區為例
- 2025年工業互聯網平臺數據加密算法性能深度評測報告
- 離婚訴訟房產評估與分割執行合同
- 冰雪旅游項目2025年投資可行性區域旅游產業發展趨勢報告
- 建筑施工安全培訓
- 電影特效后期制作與宣傳外包合同
- 城市更新項目老舊廠房拆遷補償及產業轉型協議
- 橋梁承臺基礎施工安全風險評估與控制協議
- 社工崗前培訓課件
- 監工合同范本合同范本模板7篇
- 山東省青島市、淄博市2025年高三年級第二次適應性檢測英語試題及答案(青島、淄博二模)
- 殯葬招聘面試題及答案
- 2025年村鎮銀行招聘筆試題庫
- office職場高效辦公知到課后答案智慧樹章節測試答案2025年春三亞理工職業學院
- 2025年上海市靜安區初三二模語文試卷(含答案)
- 西部計劃共基試題及答案
- 中學教育基礎(上)知到課后答案智慧樹章節測試答案2025年春陜西師范大學
- 樓梯 欄桿 欄板(一)22J403-1
- 幼兒園大班語言《沒有耳朵的兔子》課件
評論
0/150
提交評論