




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北武漢市2023年高三下學期5月質量檢測試題數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.復數滿足為虛數單位),則的虛部為()A. B. C. D.2.將函數的圖象沿軸向左平移個單位長度后,得到函數的圖象,則“”是“是偶函數”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.已知,則不等式的解集是()A. B. C. D.4.已知i是虛數單位,則1+iiA.-12+32i5.函數在上的圖象大致為()A. B.C. D.6.兩圓和相外切,且,則的最大值為()A. B.9 C. D.17.若復數滿足,則()A. B. C. D.8.已知命題:是“直線和直線互相垂直”的充要條件;命題:對任意都有零點;則下列命題為真命題的是()A. B. C. D.9.如圖,已知平面,,、是直線上的兩點,、是平面內的兩點,且,,,,.是平面上的一動點,且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.10.已知復數滿足,則的最大值為()A. B. C. D.611.已知雙曲線的左,右焦點分別為、,過的直線l交雙曲線的右支于點P,以雙曲線的實軸為直徑的圓與直線l相切,切點為H,若,則雙曲線C的離心率為()A. B. C. D.12.已知復數,若,則的值為()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐P-ABC中,,,,三個側面與底面所成的角均為,三棱錐的內切球的表面積為_________.14.運行下面的算法偽代碼,輸出的結果為_____.15.設等比數列的前項和為,若,則數列的公比是.16.在棱長為的正方體中,是正方形的中心,為的中點,過的平面與直線垂直,則平面截正方體所得的截面面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列滿足:,,且對任意的都有,(Ⅰ)證明:對任意,都有;(Ⅱ)證明:對任意,都有;(Ⅲ)證明:.18.(12分)某中學準備組建“文科”興趣特長社團,由課外活動小組對高一學生文科、理科進行了問卷調查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學生的問卷成績(單位:分)進行統計,將數據按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學生,低于60分的稱為“理科方向”學生.理科方向文科方向總計男110女50總計(1)根據已知條件完成下面列聯表,并據此判斷是否有99%的把握認為是否為“文科方向”與性別有關?(2)將頻率視為概率,現在從該校高一學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數為,若每次抽取的結果是相互獨立的,求的分布列、期望和方差.參考公式:,其中.參考臨界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82819.(12分)如圖,在四棱柱中,底面為菱形,.(1)證明:平面平面;(2)若,是等邊三角形,求二面角的余弦值.20.(12分)追求人類與生存環境的和諧發展是中國特色社會主義生態文明的價值取向.為了改善空氣質量,某城市環保局隨機抽取了一年內100天的空氣質量指數()的檢測數據,結果統計如下:空氣質量優良輕度污染中度污染重度污染嚴重污染天數61418272510(1)從空氣質量指數屬于,的天數中任取3天,求這3天中空氣質量至少有2天為優的概率;(2)已知某企業每天的經濟損失(單位:元)與空氣質量指數的關系式為,試估計該企業一個月(按30天計算)的經濟損失的數學期望.21.(12分)已知函數(1)當時,求不等式的解集;(2)若函數的值域為A,且,求a的取值范圍.22.(10分)已知函數.(1)若,,求函數的單調區間;(2)時,若對一切恒成立,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
,分子分母同乘以分母的共軛復數即可.【詳解】由已知,,故的虛部為.故選:C.【點睛】本題考查復數的除法運算,考查學生的基本運算能力,是一道基礎題.2.A【解析】
求出函數的解析式,由函數為偶函數得出的表達式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數的圖象沿軸向左平移個單位長度,得到的圖象對應函數的解析式為,若函數為偶函數,則,解得,當時,.因此,“”是“是偶函數”的充分不必要條件.故選:A.【點睛】本題考查充分不必要條件的判斷,同時也考查了利用圖象變換求三角函數解析式以及利用三角函數的奇偶性求參數,考查運算求解能力與推理能力,屬于中等題.3.A【解析】
構造函數,通過分析的單調性和對稱性,求得不等式的解集.【詳解】構造函數,是單調遞增函數,且向左移動一個單位得到,的定義域為,且,所以為奇函數,圖像關于原點對稱,所以圖像關于對稱.不等式等價于,等價于,注意到,結合圖像關于對稱和單調遞增可知.所以不等式的解集是.故選:A【點睛】本小題主要考查根據函數的單調性和對稱性解不等式,屬于中檔題.4.D【解析】
利用復數的運算法則即可化簡得出結果【詳解】1+i故選D【點睛】本題考查了復數代數形式的乘除運算,屬于基礎題。5.A【解析】
首先判斷函數的奇偶性,再根據特殊值即可利用排除法解得;【詳解】解:依題意,,故函數為偶函數,圖象關于軸對稱,排除C;而,排除B;,排除D.故選:.【點睛】本題考查函數圖象的識別,函數的奇偶性的應用,屬于基礎題.6.A【解析】
由兩圓相外切,得出,結合二次函數的性質,即可得出答案.【詳解】因為兩圓和相外切所以,即當時,取最大值故選:A【點睛】本題主要考查了由圓與圓的位置關系求參數,屬于中檔題.7.C【解析】
把已知等式變形,利用復數代數形式的除法運算化簡,再由復數模的計算公式求解.【詳解】解:由,得,∴.故選C.【點睛】本題考查復數代數形式的乘除運算,考查復數模的求法,是基礎題.8.A【解析】
先分別判斷每一個命題的真假,再利用復合命題的真假判斷確定答案即可.【詳解】當時,直線和直線,即直線為和直線互相垂直,所以“”是直線和直線互相垂直“的充分條件,當直線和直線互相垂直時,,解得.所以“”是直線和直線互相垂直“的不必要條件.:“”是直線和直線互相垂直“的充分不必要條件,故是假命題.當時,沒有零點,所以命題是假命題.所以是真命題,是假命題,是假命題,是假命題.故選:.【點睛】本題主要考查充要條件的判斷和兩直線的位置關系,考查二次函數的圖象,考查學生對這些知識的理解掌握水平.9.B【解析】
為所求的二面角的平面角,由得出,求出在內的軌跡,根據軌跡的特點求出的最大值對應的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內,以為軸,以的中垂線為軸建立平面直角坐標系則,設,整理可得:在內的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當與圓相切時,最大,取得最小值此時故選【點睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據題目選擇方法求出結果.10.B【解析】
設,,利用復數幾何意義計算.【詳解】設,由已知,,所以點在單位圓上,而,表示點到的距離,故.故選:B.【點睛】本題考查求復數模的最大值,其實本題可以利用不等式來解決.11.A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.【點睛】本題考查雙曲線離心率的計算問題,處理雙曲線離心率問題的關鍵是建立三者間的關系,本題是一道中檔題.12.D【解析】由復數模的定義可得:,求解關于實數的方程可得:.本題選擇D選項.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先確定頂點在底面的射影,再求出三棱錐的高以及各側面三角形的高,利用各個面的面積和乘以內切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設頂點在底面上的射影為H,H是三角形ABC的內心,內切圓半徑.三個側面與底面所成的角均為,,,的高,,設內切球的半徑為R,∴,內切球表面積.故答案為:.【點睛】本題考查三棱錐內切球的表面積問題,考查學生空間想象能力,本題解題關鍵是找到內切球的半徑,是一道中檔題.14.【解析】
模擬程序的運行過程知該程序運行后計算并輸出的值,用裂項相消法求和即可.【詳解】模擬程序的運行過程知,該程序運行后執行:.故答案為:【點睛】本題考查算法語句中的循環語句和裂項相消法求和;掌握循環體執行的次數是求解本題的關鍵;屬于基礎題.15..【解析】
當q=1時,.當時,,所以.16.【解析】
確定平面即為平面,四邊形是菱形,計算面積得到答案.【詳解】如圖,在正方體中,記的中點為,連接,則平面即為平面.證明如下:由正方體的性質可知,,則,四點共面,記的中點為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因為正方體的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點睛】本題考查了正方體的截面面積,意在考查學生的空間想象能力和計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)見解析(3)見解析【解析】分析:(1)用反證法證明,注意應用題中所給的條件,有效利用,再者就是注意應用反證法證題的步驟;(2)將式子進行相應的代換,結合不等式的性質證得結果;(3)結合題中的條件,應用反證法求得結果.詳解:證明:(Ⅰ)證明:采用反證法,若不成立,則若,則,與任意的都有矛盾;若,則有,則與任意的都有矛盾;故對任意,都有成立;(Ⅱ)由得,則,由(Ⅰ)知,,即對任意,都有;.(Ⅲ)由(Ⅱ)得:,由(Ⅰ)知,,∴,∴,即,若,則,取時,有,與矛盾.則.得證.點睛:該題考查的是有關命題的證明問題,在證題的過程中,注意對題中的條件的等價轉化,注意對式子的等價變形,以及證題的思路,要掌握證明問題的方法,尤其是反證法的證題思路以及證明步驟.18.(1)列聯表見解析,有;(2)分布列見解析,,.【解析】
(1)由頻率分布直方圖可得分數在、之間的學生人數,可得列聯表.根據列聯表計算的值,結合參考臨界值表可得到結論;(2)從該校高一學生中隨機抽取1人,求出該人為“文科方向”的概率.由題意,求出分布列,根據公式求出期望和方差.【詳解】(1)由頻率分布直方圖可得分數在之間的學生人數為,在之間的學生人數為,所以低于60分的學生人數為120.因此列聯表為理科方向文科方向總計男8030110女405090總計12080200又,所以有99%的把握認為是否為“文科方向”與性別有關.(2)易知從該校高一學生中隨機抽取1人,則該人為“文科方向”的概率為.依題意知,所以(),所以的分布列為0123P所以期望,方差.【點睛】本題考查獨立性檢驗,考查離散型隨機變量的分布列、期望和方差,屬于中檔題.19.(1)證明見解析(2)【解析】
(1)根據面面垂直的判定定理可知,只需證明平面即可.由為菱形可得,連接和與的交點,由等腰三角形性質可得,即能證得平面;(2)由題意知,平面,可建立空間直角坐標系,以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸,再分別求出平面的法向量,平面的法向量,即可根據向量法求出二面角的余弦值.【詳解】(1)如圖,設與相交于點,連接,又為菱形,故,為的中點.又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等邊三角形,可得,故平面,所以,,兩兩垂直.如圖以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.不妨設,則,,則,,,,,,設為平面的法向量,則即可取,設為平面的法向量,則即可取,所以.所以二面角的余弦值為0.【點睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理的應用,以及利用向量法求二面角,意在考查學生的直觀想象能力,邏輯推理能力和數學運算能力,屬于基礎題.20.(1)(2)9060元【解析】
(1)根據古典概型概率公式和組合數的計算可得所求概率;(2)任選一天,設該天的經濟損失為元,分別求出,,,進而求得數學期望,據此得出該企業一個月經濟損失的數學期望.【詳解】解:(1)設為選取的3天中空氣質量為優的天數,則.(2)任選一天,設該天的經濟損失為元,則的可能取值為0,220,1480,,,,所以(元),故該企業一個月的經濟損失的數學期望為(元).【點睛】本題考查古典概型概率公式和組合數的計算及數學期望,屬于基礎題.21.(1)或(2)【解析】
(1)分類討論去絕對值即可;(2)根據條件分a<﹣3和a≥﹣3兩種情況,由[﹣2,1]?A建立關于a的不等式,然后求出a的取值范圍.【詳解】(1)當a=﹣1時,f(x)=|x+1|.∵f(x)≤|2x+1|﹣1,∴當x≤﹣1時,原不等式可化為﹣x﹣1≤﹣2x﹣2,∴x≤﹣1;當時,原不等式可化為x+1≤﹣2x﹣2,∴x≤﹣1,此時不等式無解;當時,原不等式可化為x+1≤2x,∴x≥1,綜上,原不等式的解集為{x|x≤﹣1或x≥1}.(2)當a<﹣3時,,∴函數g(x)的值域A={x|3+a≤x≤﹣a﹣3}.∵[﹣2,1]?A,∴,∴a≤﹣5;當a≥﹣3時,,∴函數g(x)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廟院修繕合同協議
- 委托購買二手房合同協議
- 委托代建服務合同協議
- 客房用品租借合同協議
- 家具產品租賃合同協議
- 定制加工貨物合同協議
- 買賣退貨合同協議
- 建設合同初步協議
- 車位協議合同編號
- 代持合同協議
- 2025年第三屆天揚杯建筑業財稅知識競賽題庫附答案(701-800題)
- 小學科學湘科版六年級下冊全冊同步練習含答案
- 2023年江蘇安東控股集團有限公司招聘筆試題庫及答案解析
- 雙減下小學數學低段作業設計與布置課件
- 一年級數學下冊課件-1. 補磚問題4-人教版(共10張PPT)
- 螺桿泵工作原理和工況診斷方法
- 醫患溝通技巧(PPT)課件
- 真理誕生于一百個問號之后(優秀)(課堂PPT)
- 污水處理廠防汛應急演練方案
- 慢性阻塞性肺疾病(COPD)的藥物治療
- 英文形式發票樣本
評論
0/150
提交評論