廣東省廣州荔灣區廣雅中學2025屆高三下學期期末聯考數學試題_第1頁
廣東省廣州荔灣區廣雅中學2025屆高三下學期期末聯考數學試題_第2頁
廣東省廣州荔灣區廣雅中學2025屆高三下學期期末聯考數學試題_第3頁
廣東省廣州荔灣區廣雅中學2025屆高三下學期期末聯考數學試題_第4頁
廣東省廣州荔灣區廣雅中學2025屆高三下學期期末聯考數學試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省廣州荔灣區廣雅中學2025屆高三下學期期末聯考數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知F是雙曲線(k為常數)的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.22.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件3.如圖,平面四邊形中,,,,,現將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.4.的展開式中的系數為()A.5 B.10 C.20 D.305.已知函數,若,,,則a,b,c的大小關系是()A. B. C. D.6.趙爽是我國古代數學家、天文學家,大約公元222年,趙爽為《周髀算經》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設,若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為()A. B.C. D.7.若命題p:從有2件正品和2件次品的產品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q8.已知命題,那么為()A. B.C. D.9.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數的圖象向左平移個單位長度,得到函數的圖象.其中假命題的個數是()A.0 B.1 C.2 D.310.若復數(為虛數單位)的實部與虛部相等,則的值為()A. B. C. D.11.已知,滿足條件(為常數),若目標函數的最大值為9,則()A. B. C. D.12.已知整數滿足,記點的坐標為,則點滿足的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,求____________.14.某市公租房源位于、、三個小區,每位申請人只能申請其中一個小區的房子,申請其中任意一個小區的房子是等可能的,則該市的任意位申請人中,恰好有人申請小區房源的概率是______.(用數字作答)15.若變量,滿足約束條件則的最大值是______.16.在中,角,,所對的邊分別邊,且,設角的角平分線交于點,則的值最小時,___.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列an,和等比數列b(I)求數列{an}(II)求數列n2an?a18.(12分)某大型單位舉行了一次全體員工都參加的考試,從中隨機抽取了20人的分數.以下莖葉圖記錄了他們的考試分數(以十位數字為莖,個位數字為葉):若分數不低于95分,則稱該員工的成績為“優秀”.(1)從這20人中任取3人,求恰有1人成績“優秀”的概率;(2)根據這20人的分數補全下方的頻率分布表和頻率分布直方圖,并根據頻率分布直方圖解決下面的問題.組別分組頻數頻率1234①估計所有員工的平均分數(同一組中的數據用該組區間的中點值作代表);②若從所有員工中任選3人,記表示抽到的員工成績為“優秀”的人數,求的分布列和數學期望.19.(12分)為了加強環保知識的宣傳,某學校組織了垃圾分類知識竟賽活動.活動設置了四個箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機抽取張,按照自己的判斷將每張卡片放入對應的箱子中.按規則,每正確投放一張卡片得分,投放錯誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內的人數;(2)從所抽取的人中得分落在組的選手中隨機選取名選手,以表示這名選手中得分不超過分的人數,求的分布列和數學期望.20.(12分)如圖,在正四棱錐中,底面正方形的對角線交于點且(1)求直線與平面所成角的正弦值;(2)求銳二面角的大小.21.(12分)在直角坐標系x0y中,把曲線α為參數)上每個點的橫坐標變為原來的倍,縱坐標不變,得到曲線以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程(1)寫出的普通方程和的直角坐標方程;(2)設點M在上,點N在上,求|MN|的最小值以及此時M的直角坐標.22.(10分)如圖,在四棱錐中,側面為等邊三角形,且垂直于底面,,分別是的中點.(1)證明:平面平面;(2)已知點在棱上且,求直線與平面所成角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

分析可得,再去絕對值化簡成標準形式,進而根據雙曲線的性質求解即可.【詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.2、D【解析】

通過列舉法可求解,如兩角分別為時【詳解】當時,,但,故充分條件推不出;當時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數在解三角形中的具體應用,屬于基礎題3、C【解析】

由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進而算出,外接球半徑為1,得出結果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點睛】本題主要考查簡單的幾何體、球的表面積等基礎知識;考查空間想象能力、推理論證能力、運算求解能力及創新意識,屬于中檔題.4、C【解析】

由知,展開式中項有兩項,一項是中的項,另一項是與中含x的項乘積構成.【詳解】由已知,,因為展開式的通項為,所以展開式中的系數為.故選:C.【點睛】本題考查求二項式定理展開式中的特定項,解決這類問題要注意通項公式應寫準確,本題是一道基礎題.5、D【解析】

根據題意,求出函數的導數,由函數的導數與函數單調性的關系分析可得在上為增函數,又由,分析可得答案.【詳解】解:根據題意,函數,其導數函數,則有在上恒成立,則在上為增函數;又由,則;故選:.【點睛】本題考查函數的導數與函數單調性的關系,涉及函數單調性的性質,屬于基礎題.6、D【解析】

設,則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結論.【詳解】由題意,設,則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點取自小正六邊形的概率.故選:D.【點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎知識,考查運算求解能力,屬于基礎題.7、B【解析】因為從有2件正品和2件次品的產品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構成的復合命題的真假的判定有機地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運用、幾何概型的特征與計算公式的運用等知識與方法的綜合運用,以及分析問題解決問題的能力。8、B【解析】

利用特稱命題的否定分析解答得解.【詳解】已知命題,,那么是.故選:.【點睛】本題主要考查特稱命題的否定,意在考查學生對該知識的理解掌握水平,屬于基礎題.9、C【解析】

結合不等式、三角函數的性質,對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因為,所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數的單調性可知,,即,即可得到,即充分性成立;必要性:中,,若,結合余弦函數的單調性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數單調性的應用,考查了三角函數圖象的平移變換,考查了學生的邏輯推理能力,屬于基礎題.10、C【解析】

利用復數的除法,以及復數的基本概念求解即可.【詳解】,又的實部與虛部相等,,解得.故選:C【點睛】本題主要考查復數的除法運算,復數的概念運用.11、B【解析】

由目標函數的最大值為9,我們可以畫出滿足條件件為常數)的可行域,根據目標函數的解析式形式,分析取得最優解的點的坐標,然后根據分析列出一個含參數的方程組,消參后即可得到的取值.【詳解】畫出,滿足的為常數)可行域如下圖:由于目標函數的最大值為9,可得直線與直線的交點,使目標函數取得最大值,將,代入得:.故選:.【點睛】如果約束條件中含有參數,我們可以先畫出不含參數的幾個不等式對應的平面區域,分析取得最優解是哪兩條直線的交點,然后得到一個含有參數的方程(組,代入另一條直線方程,消去,后,即可求出參數的值.12、D【解析】

列出所有圓內的整數點共有37個,滿足條件的有7個,相除得到概率.【詳解】因為是整數,所以所有滿足條件的點是位于圓(含邊界)內的整數點,滿足條件的整數點有共37個,滿足的整數點有7個,則所求概率為.故選:.【點睛】本題考查了古典概率的計算,意在考查學生的應用能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出向量的坐標,然后利用向量數量積的坐標運算可計算出結果.【詳解】,,,因此,.故答案為:.【點睛】本題考查平面向量數量積的坐標運算,考查計算能力,屬于基礎題.14、【解析】

基本事件總數,恰好有2人申請小區房源包含的基本事件個數,由此能求出該市的任意5位申請人中,恰好有2人申請小區房源的概率.【詳解】解:某市公租房源位于、、三個小區,每位申請人只能申請其中一個小區的房子,申請其中任意一個小區的房子是等可能的,該市的任意5位申請人中,基本事件總數,該市的任意5位申請人中,恰好有2人申請小區房源包含的基本事件個數:,該市的任意5位申請人中,恰好有2人申請小區房源的概率是.故答案為:.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,屬于中檔題.15、9【解析】

做出滿足條件的可行域,根據圖形,即可求出的最大值.【詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標函數過點時取得最大值,聯立,解得,即,所以最大值為9.故答案為:9.【點睛】本題考查二元一次不等式組表示平面區域,利用數形結合求線性目標函數的最值,屬于基礎題.16、【解析】

根據題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因為,則,由余弦定理得:,當且僅當時取等號,又因為,,所以.故答案為:.【點睛】本題考查余弦定理和正弦定理的應用,以及基本不等式求最值,考查計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(I)an=2n-1,bn=【解析】

(I)直接利用等差數列,等比數列公式聯立方程計算得到答案.(II)n2【詳解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【點睛】本題考查了等差數列,等比數列,裂項求和,意在考查學生對于數列公式方法的綜合應用.18、(1);(2)①82,②分布列見解析,【解析】

(1)從20人中任取3人共有種結果,恰有1人成績“優秀”共有種結果,利用古典概型的概率計算公式計算即可;(2)①平均數的估計值為各小矩形的組中值與其面積乘積的和;②要注意服從的是二項分布,不是超幾何分布,利用二項分布的分布列及期望公式求解即可.【詳解】(1)設從20人中任取3人恰有1人成績“優秀”為事件,則,所以,恰有1人“優秀”的概率為.(2)組別分組頻數頻率120.01260.03380.04440.02①,估計所有員工的平均分為82②的可能取值為0、1、2、3,隨機選取1人是“優秀”的概率為,∴;;;;∴的分布列為0123∵,∴數學期望.【點睛】本題考查古典概型的概率計算以及二項分布期望的問題,涉及到頻率分布直方圖、平均數的估計值等知識,是一道容易題.19、(1)所抽取的人中得分落在組和內的人數分別為人、人;(2)分布列見解析,.【解析】

(1)將分別乘以區間、對應的矩形面積可得出結果;(2)由題可知,隨機變量的可能取值為、、,利用超幾何分布概率公式計算出隨機變量在不同取值下的概率,可得出隨機變量的分布列,并由此計算出隨機變量的數學期望值.【詳解】(1)由題意知,所抽取的人中得分落在組的人數有(人),得分落在組的人數有(人).因此,所抽取的人中得分落在組的人數有人,得分落在組的人數有人;(2)由題意可知,隨機變量的所有可能取值為、、,,,,所以,隨機變量的分布列為:所以,隨機變量的期望為.【點睛】本題考查利用頻率分布直方圖計算頻數,同時也考查了離散型隨機變量分布列與數學期望的求解,考查計算能力,屬于基礎題.20、(1);(2).【解析】

(1)以分別為軸,軸,軸,建立空間直角坐標系,設底面正方形邊長為再求解與平面的法向量,繼而求得直線與平面所成角的正弦值即可.(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.【詳解】解:在正四棱錐中,底面正方形的對角線交于點所以平面取的中點的中點所以兩兩垂直,故以點為坐標原點,以分別為軸,軸,軸,建立空間直角坐標系.設底面正方形邊長為因為所以所以,所以,設平面的法向量是,因為,,所以,,取則,所以所以,所以直線與平面所成角的正弦值為.設平面的法向量是,因為,,所以,取則所以,由知平面的法向量是,所以所以,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論