2025屆重慶一中高三第二學期階段考試數學試題_第1頁
2025屆重慶一中高三第二學期階段考試數學試題_第2頁
2025屆重慶一中高三第二學期階段考試數學試題_第3頁
2025屆重慶一中高三第二學期階段考試數學試題_第4頁
2025屆重慶一中高三第二學期階段考試數學試題_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆重慶一中高三第二學期階段考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設全集U=R,集合,則()A. B. C. D.2.在中,角的對邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形3.已知,則不等式的解集是()A. B. C. D.4.已知函數,,則的極大值點為()A. B. C. D.5.已知角的頂點與原點重合,始邊與軸的正半軸重合,終邊經過點,則()A. B. C. D.6.若復數(是虛數單位),則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.2019年10月17日是我國第6個“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動,現有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種8.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}9.已知定點,,是圓上的任意一點,點關于點的對稱點為,線段的垂直平分線與直線相交于點,則點的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓10.已知函數,當時,恒成立,則的取值范圍為()A. B. C. D.11.若,,則的值為()A. B. C. D.12.已知復數,其中為虛數單位,則()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數為奇函數,,且與圖象的交點為,,…,,則______.14.工人在安裝一個正六邊形零件時,需要固定如圖所示的六個位置的螺栓.若按一定順序將每個螺栓固定緊,但不能連續(xù)固定相鄰的2個螺栓.則不同的固定螺栓方式的種數是________.15.某校為了解家長對學校食堂的滿意情況,分別從高一、高二年級隨機抽取了20位家長的滿意度評分,其頻數分布表如下:滿意度評分分組合計高一1366420高二2655220根據評分,將家長的滿意度從低到高分為三個等級:滿意度評分評分70分70評分90評分90分滿意度等級不滿意滿意非常滿意假設兩個年級家長的評價結果相互獨立,根據所給數據,以事件發(fā)生的頻率作為相應事件發(fā)生的概率.現從高一、高二年級各隨機抽取1名家長,記事件:“高一家長的滿意度等級高于高二家長的滿意度等級”,則事件發(fā)生的概率為__________.16.設直線過雙曲線的一個焦點,且與的一條對稱軸垂直,與交于兩點,為的實軸長的2倍,則雙曲線的離心率為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面是菱形,對角線交于點為棱的中點,.求證:(1)平面;(2)平面平面.18.(12分)4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動.學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調查.各組人數統(tǒng)計如下:小組甲乙丙丁人數12969(1)從參加問卷調查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數,求隨機變量的分布列和數學期望.19.(12分)如圖所示,四棱錐P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E為AB的中點,底面四邊形ABCD滿足∠ADC=∠DCB=90°,AD=1,BC=1.(Ⅰ)求證:平面PDE⊥平面PAC;(Ⅱ)求直線PC與平面PDE所成角的正弦值;(Ⅲ)求二面角D﹣PE﹣B的余弦值.20.(12分)某商場以分期付款方式銷售某種商品,根據以往資料統(tǒng)計,顧客購買該商品選擇分期付款的期數的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場銷售一件該商品,若顧客選擇分2期付款,則商場獲得利潤l00元,若顧客選擇分3期付款,則商場獲得利潤150元,若顧客選擇分4期付款,則商場獲得利潤200元.商場銷售兩件該商品所獲的利潤記為(單位:元)(ⅰ)求的分布列;(ⅱ)若,求的數學期望的最大值.21.(12分)已知,函數.(Ⅰ)若在區(qū)間上單調遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數據:)22.(10分)如圖,在四邊形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.(Ⅰ)求證:平面ADE⊥平面BDEF;(Ⅱ)若二面角CBFD的大小為60°,求CF與平面ABCD所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

求出集合M和集合N,,利用集合交集補集的定義進行計算即可.【詳解】,,則,故選:A.【點睛】本題考查集合的交集和補集的運算,考查指數不等式和二次不等式的解法,屬于基礎題.2.C【解析】

利用正弦定理將邊化角,再由,化簡可得,最后分類討論可得;【詳解】解:因為所以所以所以所以所以當時,為直角三角形;當時即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.【點睛】本題考查三角形形狀的判斷,考查正弦定理的運用,考查學生分析解決問題的能力,屬于基礎題.3.A【解析】

構造函數,通過分析的單調性和對稱性,求得不等式的解集.【詳解】構造函數,是單調遞增函數,且向左移動一個單位得到,的定義域為,且,所以為奇函數,圖像關于原點對稱,所以圖像關于對稱.不等式等價于,等價于,注意到,結合圖像關于對稱和單調遞增可知.所以不等式的解集是.故選:A【點睛】本小題主要考查根據函數的單調性和對稱性解不等式,屬于中檔題.4.A【解析】

求出函數的導函數,令導數為零,根據函數單調性,求得極大值點即可.【詳解】因為,故可得,令,因為,故可得或,則在區(qū)間單調遞增,在單調遞減,在單調遞增,故的極大值點為.故選:A.【點睛】本題考查利用導數求函數的極值點,屬基礎題.5.A【解析】

由已知可得,根據二倍角公式即可求解.【詳解】角的頂點與原點重合,始邊與軸的正半軸重合,終邊經過點,則,.故選:A.【點睛】本題考查三角函數定義、二倍角公式,考查計算求解能力,屬于基礎題.6.A【解析】

將整理成的形式,得到復數所對應的的點,從而可選出所在象限.【詳解】解:,所以所對應的點為在第一象限.故選:A.【點睛】本題考查了復數的乘法運算,考查了復數對應的坐標.易錯點是誤把當成進行計算.7.B【解析】

分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計算出兩類的分配種數,再由加法原理即可得到答案.【詳解】根據醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當醫(yī)院B只有1人,則共有種不同分配方案,當醫(yī)院B有2人,則共有種不同分配方案,所以當醫(yī)院A只分配1人時,共有種不同分配方案;第二類:若醫(yī)院A分配2人,當乙在醫(yī)院A時,共有種不同分配方案,當乙不在A醫(yī)院,在B醫(yī)院時,共有種不同分配方案,所以當醫(yī)院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應用,在做此類題時,要做到分類不重不漏,考查學生分類討論的思想,是一道中檔題.8.A【解析】

解出集合A和B即可求得兩個集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【點睛】此題考查求集合的并集,關鍵在于準確求解不等式,根據描述法表示的集合,準確寫出集合中的元素.9.B【解析】

根據線段垂直平分線的性質,結合三角形中位線定理、圓錐曲線和圓的定義進行判斷即可.【詳解】因為線段的垂直平分線與直線相交于點,如下圖所示:所以有,而是中點,連接,故,因此當在如下圖所示位置時有,所以有,而是中點,連接,故,因此,綜上所述:有,所以點的軌跡是雙曲線.故選:B【點睛】本題考查了雙曲線的定義,考查了數學運算能力和推理論證能力,考查了分類討論思想.10.A【解析】

分析可得,顯然在上恒成立,只需討論時的情況即可,,然后構造函數,結合的單調性,不等式等價于,進而求得的取值范圍即可.【詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當時,等價于,因為,所以.設,由,顯然在上單調遞增,因為,所以等價于,即,則.設,則.令,解得,易得在上單調遞增,在上單調遞減,從而,故.故選:A.【點睛】本題考查了不等式恒成立問題,利用函數單調性是解決本題的關鍵,考查了學生的推理能力,屬于基礎題.11.A【解析】

取,得到,取,則,計算得到答案.【詳解】取,得到;取,則.故.故選:.【點睛】本題考查了二項式定理的應用,取和是解題的關鍵.12.D【解析】

把已知等式變形,然后利用數代數形式的乘除運算化簡,再由復數模的公式計算得答案.【詳解】解:,則.故選:D.【點睛】本題考查了復數代數形式的乘除運算,考查了復數模的求法,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.18【解析】

由題意得函數f(x)與g(x)的圖像都關于點對稱,結合函數的對稱性進行求解即可.【詳解】函數為奇函數,函數關于點對稱,,函數關于點對稱,所以兩個函數圖象的交點也關于點(1,2)對稱,與圖像的交點為,,…,,兩兩關于點對稱,.故答案為:18【點睛】本題考查了函數對稱性的應用,結合函數奇偶性以及分式函數的性質求出函數的對稱性是解決本題的關鍵,屬于中檔題.14.60【解析】分析:首先將選定第一個釘,總共有6種方法,假設選定1號,之后分析第二步,第三步等,按照分類加法計數原理,可以求得共有10種方法,利用分步乘法計數原理,求得總共有種方法.詳解:根據題意,第一個可以從6個釘里任意選一個,共有6種選擇方法,并且是機會相等的,若第一個選1號釘的時候,第二個可以選3,4,5號釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點睛:該題考查的是有關分類加法計數原理和分步乘法計數原理,在解題的過程中,需要逐個的將對應的過程寫出來,所以利用列舉法將對應的結果列出,而對于第一個選哪個是機會均等的,從而用乘法運算得到結果.15.0.42【解析】

高一家長的滿意度等級高于高二家長的滿意度等級有三種情況,分別求出三種情況的概率,再利用加法公式即可.【詳解】由已知,高一家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高二家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高一家長的滿意度等級高于高二家長的滿意度等級有三種情況:1.高一家長滿意,高二家長不滿意,其概率為;2.高一家長非常滿意,高二家長不滿意,其概率為;3.高一家長非常滿意,高二家長滿意,其概率為.由加法公式,知事件發(fā)生的概率為.故答案為:【點睛】本題考查獨立事件的概率,涉及到概率的加法公式,是一道中檔題.16.【解析】

不妨設雙曲線,焦點,令,由的長為實軸的二倍能夠推導出的離心率.【詳解】不妨設雙曲線,焦點,對稱軸,由題設知,因為的長為實軸的二倍,,,,故答案為.【點睛】本題主要考查利用雙曲線的簡單性質求雙曲線的離心率,屬于中檔題.求解與雙曲線性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯(lián)系.求離心率問題應先將用有關的一些量表示出來,再利用其中的一些關系構造出關于的等式,從而求出的值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)詳見解析;(2)詳見解析.【解析】

(1)連結根據中位線的性質證明即可.(2)證明,再證明平面即可.【詳解】解:證明:連結是菱形對角線的交點,為的中點,是棱的中點,平面平面平面解:在菱形中,且為的中點,,,平面平面,平面平面.【點睛】本題主要考查了線面平行與垂直的判定,屬于基礎題.18.(1)(2)見解析,【解析】

(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問卷調查的12名學生中隨機抽取2人,基本事件總數為,這兩人來自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,而甲、丙兩個小組學生分別有4人和2人,所以抽取的兩人中是甲組的學生的人數的可能取值為0,1,2,分別求出相應的概率,由此能求出隨機變量的分布列和數學期望.【詳解】(1)由題設易得,問卷調查從四個小組中抽取的人數分別為4,3,2,3(人),從參加問卷調查的12名學生中隨機抽取兩名的取法共有(種),抽取的兩名學生來自同一小組的取法共有(種),所以,抽取的兩名學生來自同一個小組的概率為(2)由(1)知,在參加問卷調查的12名學生中,來自甲、丙兩小組的學生人數分別為4人、2人,所以,抽取的兩人中是甲組的學生的人數的可能取值為0,1,2,因為所以隨機變量的分布列為:012所求的期望為【點睛】此題考查概率的求法,考查離散型隨機變量的分布列和數學期望的求法,考查分層抽樣、古典概型、排列組合等知識,考查運算能力,屬于中檔題.19.(Ⅰ)證明見解析(Ⅱ).(Ⅲ)﹣.【解析】

(Ⅰ)由題知,如圖以點為原點,直線分別為軸,建立空間直角坐標系,計算,證明,從而平面PAC,即可得證;(Ⅱ)求解平面PDE的一個法向量,計算,即可得直線PC與平面PDE所成角的正弦值;(Ⅲ)求解平面PBE的一個法向量,計算,即可得二面角D﹣PE﹣B的余弦值.【詳解】(Ⅰ)PC⊥底面ABCD,,如圖以點為原點,直線分別為軸,建立空間直角坐標系,則,,,,又,平面PAC,平面PDE,平面PDE⊥平面PAC;(Ⅱ)設為平面PDE的一個法向量,又,則,取,得,直線PC與平面PDE所成角的正弦值;(Ⅲ)設為平面PBE的一個法向量,又則,取,得,,二面角D﹣PE﹣B的余弦值﹣.【點睛】本題主要考查了平面與平面的垂直,直線與平面所成角的計算,二面角大小的求解,考查了空間向量在立體幾何中的應用,考查了學生的空間想象能力與運算求解能力.20.(Ⅰ)0.288(Ⅱ)(ⅰ)見解析(ⅱ)數學期望的最大值為280【解析】

(Ⅰ)根據題意,設購買該商品的3位顧客中,選擇分2期付款的人數為,由獨立重復事件的特點得出,利用二項分布的概率公式,即可求出結果;(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,根據離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據的分布列,得出的數學期望,結合,即可算出的最大值.【詳解】解:(Ⅰ)設購買該商品的3位顧客中,選擇分2期付款的人數為,則,則,故購買該商品的3位顧客中,恰有2位選擇分2期付款的概率為0.288.(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,,,,,的分布列為:2002503003504000.16(ⅱ),由題意知,,,,,又,即,解得,,,當時,的最大值為280,所以的數學期望的最大值為280.【點睛】本題考查獨立重復事件和二項分布的應用,以及離散型分布列和數學期望,考查計算能力.21.(Ⅰ);(Ⅱ)3.【解析】

(Ⅰ)先求導,得,已知導函數單調遞增,又在區(qū)間上單調遞增,故,令,求得,討論得,而,故,進而得解;(Ⅱ)可通過必要性探路,當時,由知,又由于,則,當,,結合零點存在定理可判斷必存在使得,得,,化簡得,再由二次函數性質即可求證;【詳解】(Ⅰ)的定義域為.易知單調遞增,由題意有.令,則.令得.所以當時,單調遞增;當時,單調遞減.所以,而又有,因此,所以.(Ⅱ)由知,又由于,則.下面證明符合條件.若.所以.易知單調遞增,而,,因此必存在使得,即.且當時,單調遞減;當時,,單調遞增;則.綜上,的最大值為3.【點睛】本題考查導數的計算,利用導數研究函數的增減性和最值,屬于中檔題22.(1)見解析(2)【解析】分析:(1)根據面面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論