




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆新疆石河子市第一中學高三期初考試數學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若sin(α+3π2A.-12 B.-132.已知復數,(為虛數單位),若為純虛數,則()A. B.2 C. D.3.劉徽(約公元225年-295年),魏晉期間偉大的數學家,中國古典數學理論的奠基人之一他在割圓術中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術的核心思想是將一個圓的內接正n邊形等分成n個等腰三角形(如圖所示),當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術的思想,得到的近似值為()A. B. C. D.4.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,25.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.6.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.327.已知,則下列說法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題8.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.9.如圖所示是某年第一季度五省GDP情況圖,則下列說法中不正確的是()A.該年第一季度GDP增速由高到低排位第3的是山東省B.與去年同期相比,該年第一季度的GDP總量實現了增長C.該年第一季度GDP總量和增速由高到低排位均居同一位的省份有2個D.去年同期浙江省的GDP總量超過了4500億元10.過直線上一點作圓的兩條切線,,,為切點,當直線,關于直線對稱時,()A. B. C. D.11.已知定義在上的函數滿足,且在上是增函數,不等式對于恒成立,則的取值范圍是A. B. C. D.12.已知是定義是上的奇函數,滿足,當時,,則函數在區間上的零點個數是()A.3 B.5 C.7 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知下列命題:①命題“?x0∈R,”的否定是“?x∈R,x2+1<3x”;②已知p,q為兩個命題,若“p∨q”為假命題,則“”為真命題;③“a>2”是“a>5”的充分不必要條件;④“若xy=0,則x=0且y=0”的逆否命題為真命題.其中所有真命題的序號是________.14.已知函數,若函數恰有4個零點,則實數的取值范圍是________.15.已知雙曲線的左、右焦點和點為某個等腰三角形的三個頂點,則雙曲線C的離心率為________.16.已知橢圓:的左、右焦點分別為,,如圖是過且垂直于長軸的弦,則的內切圓方程是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的上頂點為,圓與軸的正半軸交于點,與有且僅有兩個交點且都在軸上,(為坐標原點).(1)求橢圓的方程;(2)已知點,不過點且斜率為的直線與橢圓交于兩點,證明:直線與直線的斜率互為相反數.18.(12分)如圖,為等腰直角三角形,,D為AC上一點,將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.19.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.20.(12分)在中,,.已知分別是的中點.將沿折起,使到的位置且二面角的大小是60°,連接,如圖:(1)證明:平面平面(2)求平面與平面所成二面角的大小.21.(12分)已知曲線的參數方程為為參數,曲線的參數方程為為參數).(1)求與的普通方程;(2)若與相交于,兩點,且,求的值.22.(10分)已知圓外有一點,過點作直線.(1)當直線與圓相切時,求直線的方程;(2)當直線的傾斜角為時,求直線被圓所截得的弦長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由三角函數的誘導公式和倍角公式化簡即可.【詳解】因為sinα+3π2=3故選B【點睛】本題考查了三角函數的誘導公式和倍角公式,靈活掌握公式是關鍵,屬于基礎題.2、C【解析】
把代入,利用復數代數形式的除法運算化簡,由實部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數,∴,解得.故選C.【點睛】本題考查復數代數形式的除法運算,考查復數的基本概念,是基礎題.3、A【解析】
設圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術可得圓的面積為,整理可得,當時即可為所求.【詳解】由割圓術可知當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當時,可得,故選:A【點睛】本題考查三角形面積公式的應用,考查閱讀分析能力.4、C【解析】
先求出集合U,再根據補集的定義求出結果即可.【詳解】由題意得U=x|∵A=1,2∴CU故選C.【點睛】本題考查集合補集的運算,求解的關鍵是正確求出集合U和熟悉補集的定義,屬于簡單題.5、D【解析】
先計算,然后將進行平方,,可得結果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數量積的運算和模的計算,屬基礎題。6、A【解析】
根據三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側的四棱錐,其底面是邊長為4的正方形,高為4,故.故選:A【點睛】本題考查了三視圖的簡單應用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎題.7、D【解析】
舉例判斷命題p與q的真假,再由復合命題的真假判斷得答案.【詳解】當時,故命題為假命題;記f(x)=ex﹣x的導數為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【點睛】本題考查復合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數的圖象與性質,是基礎題.8、C【解析】
利用圓心到漸近線的距離等于半徑即可建立間的關系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關鍵是建立三者間的方程或不等關系,本題是一道基礎題.9、D【解析】
根據折線圖、柱形圖的性質,對選項逐一判斷即可.【詳解】由折線圖可知A、B項均正確,該年第一季度總量和增速由高到低排位均居同一位的省份有江蘇均第一.河南均第四.共2個.故C項正確;.故D項不正確.故選:D.【點睛】本題考查折線圖、柱形圖的識別,考查學生的閱讀能力、數據處理能力,屬于中檔題.10、C【解析】
判斷圓心與直線的關系,確定直線,關于直線對稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質求出,得,從而得.【詳解】如圖,設圓的圓心為,半徑為,點不在直線上,要滿足直線,關于直線對稱,則必垂直于直線,∴,設,則,,∴,.故選:C.【點睛】本題考查直線與圓的位置關系,考查直線的對稱性,解題關鍵是由圓的兩條切線關于直線對稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.11、A【解析】
根據奇偶性定義和性質可判斷出函數為偶函數且在上是減函數,由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結果.【詳解】為定義在上的偶函數,圖象關于軸對稱又在上是增函數在上是減函數,即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點睛】本題考查利用函數的奇偶性和單調性求解函數不等式的問題,涉及到恒成立問題的求解;解題關鍵是能夠利用函數單調性將函數值的大小關系轉化為自變量的大小關系,從而利用分離變量法來處理恒成立問題.12、D【解析】
根據是定義是上的奇函數,滿足,可得函數的周期為3,再由奇函數的性質結合已知可得,利用周期性可得函數在區間上的零點個數.【詳解】∵是定義是上的奇函數,滿足,,可得,
函數的周期為3,
∵當時,,
令,則,解得或1,
又∵函數是定義域為的奇函數,
∴在區間上,有.
由,取,得,得,
∴.
又∵函數是周期為3的周期函數,
∴方程=0在區間上的解有共9個,
故選D.【點睛】本題考查根的存在性及根的個數判斷,考查抽象函數周期性的應用,考查邏輯思維能力與推理論證能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、②【解析】命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①錯誤;“p∨q”為假命題說明p假q假,則(p)∧(q)為真命題,故②正確;a>5?a>2,但a>2?/a>5,故“a>2”是“a>5”的必要不充分條件,故③錯誤;因為“若xy=0,則x=0或y=0”,所以原命題為假命題,故其逆否命題也為假命題,故④錯誤.14、【解析】
函數恰有4個零點,等價于函數與函數的圖象有四個不同的交點,畫出函數圖象,利用數形結合思想進行求解即可.【詳解】函數恰有4個零點,等價于函數與函數的圖象有四個不同的交點,畫出函數圖象如下圖所示:由圖象可知:實數的取值范圍是.故答案為:【點睛】本題考查了已知函數零點個數求參數取值范圍問題,考查了數形結合思想和轉化思想.15、【解析】
由等腰三角形及雙曲線的對稱性可知或,進而利用兩點間距離公式求解即可.【詳解】由題設雙曲線的左、右焦點分別為,,因為左、右焦點和點為某個等腰三角形的三個頂點,當時,,由可得,等式兩邊同除可得,解得(舍);當時,,由可得,等式兩邊同除可得,解得,故答案為:【點睛】本題考查求雙曲線的離心率,考查雙曲線的幾何性質的應用,考查分類討論思想.16、【解析】
利用公式計算出,其中為的周長,為內切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標.【詳解】由已知,,,,設內切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內切圓方程為.故答案為:.【點睛】本題考查橢圓中三角形內切圓的方程問題,涉及到橢圓焦點三角形、橢圓的定義等知識,考查學生的運算能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)根據條件可得,進而得到,即可得到橢圓方程;(2)設直線的方程為,聯立,分別表示出直線和直線斜率,相加利用根與系數關系即可得到.【詳解】解:(1)圓與有且僅有兩個交點且都在軸上,所以,又,,解得,故橢圓的方程為;(2)設直線的方程為,聯立,整理可得,則,解得,設點,,則,,所以,故直線與直線的斜率互為相反數.【點睛】本題考查直線與橢圓的位置關系,涉及橢圓的幾何性質,關鍵是求出橢圓的標準方程,屬于中檔題.18、(1)見解析;(2)【解析】
(1)由折疊過程知與平面垂直,得,再取中點,可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點,以為原點,所在直線為軸,在平面內過作的垂線為軸建立空間直角坐標系,由已知求出線段長,得出各點坐標,用平面的法向量計算二面角的余弦.【詳解】(1)易知與平面垂直,∴,連接,取中點,連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點,令,則,由,,∴,解得,故.以為原點,所在直線為軸,在平面內過作的垂線為軸建立空間直角坐標系,如圖,則,,,設平面的法向量為,則,取,則.又易知平面的一個法向量為,.∴二面角的余弦值為.【點睛】本題考查證明線線垂直,考查用空間向量法求二面角.證線線垂直,一般先證線面垂直,而證線面垂直又要證線線垂直,注意線線垂直、線面垂直及面面垂直的轉化.求空間角,常用方法就是建立空間直角坐標系,用空間向量法求空間角.19、(1);(2)【解析】
(1)根據同角三角函數式可求得,結合正弦和角公式求得,即可求得,進而由三角函數(2)設根據余弦定理及基本不等式,可求得的最大值,結合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數關系式可得,則,則,所以.(2)設在中由余弦定理可得,代入可得,由基本不等式可知,即,當且僅當時取等號,由三角形面積公式可得,所以四邊形面積的最大值為.【點睛】本題考查了正弦和角公式化簡三角函數式的應用,余弦定理及不等式式求最值的綜合應用,屬于中檔題.20、(1)證明見解析(2)45°【解析】
(1)設的中點為,連接,設的中點為,連接,,從而即為二面角的平面角,,推導出,從而平面,則,即,進而平面,推導四邊形為平行四邊形,從而,平面,由此即可得證.(2)以B為原點,在平面中過B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標系,利用向量法求出平面與平面所成二面角的大小.【詳解】(1)∵是的中點,∴.設的中點為,連接.設的中點為,連接,.易證:,,∴即為二面角的平面角.∴,而為的中點.易知,∴為等邊三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分別為的中點.∴四邊形為平行四邊形.∴,平面,又
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新能源汽車氫化純化裝置企業縣域市場拓展與下沉戰略研究報告
- 大地測量儀器企業ESG實踐與創新戰略研究報告
- 納米碳管企業縣域市場拓展與下沉戰略研究報告
- 自學與輔導的2025年稅務師考試選擇思考試題及答案
- 電磁流變材料企業數字化轉型與智慧升級戰略研究報告
- 耐熱不銹鋼焊接鋼管企業數字化轉型與智慧升級戰略研究報告
- 衛生陶瓷隧道窯企業縣域市場拓展與下沉戰略研究報告
- 新能源汽車焊接工藝企業縣域市場拓展與下沉戰略研究報告
- 發電用燃氣輪機企業數字化轉型與智慧升級戰略研究報告
- 制帽機械企業縣域市場拓展與下沉戰略研究報告
- 期中模擬卷(新疆專用)-2024-2025學年八年級英語下學期核心素養素質調研模擬練習試題(考試版)A4
- 2025年簽訂好的勞動合同模板
- 物理試題2025年東北三省四城市聯考暨沈陽市高三質量監測(二)及答案
- 2025廣東省深圳市中考數學復習分類匯編《函數綜合題》含答案解析
- 七年級地理下冊第七單元測試題(人教版)
- 【9道一模】2025年安徽省合肥市蜀山區九年級中考一模道法試卷(含答案)
- 金融工程重點總結
- 控煙知識培訓課件
- 設備的技改和更新管理制度
- GB/T 5453-2025紡織品織物透氣性的測定
- 2025年度毛絨玩具采購合同
評論
0/150
提交評論