2025屆江蘇省揚州市邗江區公道中學高三數學試題下學期一模預考試題_第1頁
2025屆江蘇省揚州市邗江區公道中學高三數學試題下學期一模預考試題_第2頁
2025屆江蘇省揚州市邗江區公道中學高三數學試題下學期一模預考試題_第3頁
2025屆江蘇省揚州市邗江區公道中學高三數學試題下學期一模預考試題_第4頁
2025屆江蘇省揚州市邗江區公道中學高三數學試題下學期一模預考試題_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇省揚州市邗江區公道中學高三數學試題下學期一模預考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則()A. B. C. D.2.已知數列是公差為的等差數列,且成等比數列,則()A.4 B.3 C.2 D.13.造紙術、印刷術、指南針、火藥被稱為中國古代四大發明,此說法最早由英國漢學家艾約瑟提出并為后來許多中國的歷史學家所繼承,普遍認為這四種發明對中國古代的政治,經濟,文化的發展產生了巨大的推動作用.某小學三年級共有學生500名,隨機抽查100名學生并提問中國古代四大發明,能說出兩種發明的有45人,能說出3種及其以上發明的有32人,據此估計該校三級的500名學生中,對四大發明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人4.公元263年左右,我國數學家劉徽發現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為()(參考數據:)A.48 B.36 C.24 D.125.半徑為2的球內有一個內接正三棱柱,則正三棱柱的側面積的最大值為()A. B. C. D.6.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點,又P、Q分別在線段、上,且,設平面平面,則下列結論中不成立的是()A.平面 B.C.當時,平面 D.當m變化時,直線l的位置不變7.已知函數,,若成立,則的最小值為()A.0 B.4 C. D.8.一只螞蟻在邊長為的正三角形區域內隨機爬行,則在離三個頂點距離都大于的區域內的概率為()A. B. C. D.9.已知函數的圖象的一條對稱軸為,將函數的圖象向右平行移動個單位長度后得到函數圖象,則函數的解析式為()A. B.C. D.10.若單位向量,夾角為,,且,則實數()A.-1 B.2 C.0或-1 D.2或-111.已知盒中有3個紅球,3個黃球,3個白球,且每種顏色的三個球均按,,編號,現從中摸出3個球(除顏色與編號外球沒有區別),則恰好不同時包含字母,,的概率為()A. B. C. D.12.已知等差數列中,,則()A.20 B.18 C.16 D.14二、填空題:本題共4小題,每小題5分,共20分。13.若直線與直線交于點,則長度的最大值為____.14.若函數在區間上有且僅有一個零點,則實數的取值范圍有___________.15.已知向量滿足,,則______________.16.已知向量,且,則實數的值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列是公比為正數的等比數列,其前項和為,滿足,且成等差數列.(1)求的通項公式;(2)若數列滿足,求的值.18.(12分)已知函數,函數在點處的切線斜率為0.(1)試用含有的式子表示,并討論的單調性;(2)對于函數圖象上的不同兩點,,如果在函數圖象上存在點,使得在點處的切線,則稱存在“跟隨切線”.特別地,當時,又稱存在“中值跟隨切線”.試問:函數上是否存在兩點使得它存在“中值跟隨切線”,若存在,求出的坐標,若不存在,說明理由.19.(12分)已知均為正實數,函數的最小值為.證明:(1);(2).20.(12分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.21.(12分)已知函數,當時,有極大值3;(1)求,的值;(2)求函數的極小值及單調區間.22.(10分)已知x,y,z均為正數.(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

計算,再計算交集得到答案【詳解】,表示偶數,故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.2.A【解析】

根據等差數列和等比數列公式直接計算得到答案.【詳解】由成等比數列得,即,已知,解得.故選:.【點睛】本題考查了等差數列,等比數列的基本量的計算,意在考查學生的計算能力.3.D【解析】

先求得名學生中,只能說出一種或一種也說不出的人數,由此利用比例,求得名學生中對四大發明只能說出一種或一種也說不出的人數.【詳解】在這100名學生中,只能說出一種或一種也說不出的有人,設對四大發明只能說出一種或一種也說不出的有人,則,解得人.故選:D【點睛】本小題主要考查利用樣本估計總體,屬于基礎題.4.C【解析】

由開始,按照框圖,依次求出s,進行判斷。【詳解】,故選C.【點睛】框圖問題,依據框圖結構,依次準確求出數值,進行判斷,是解題關鍵。5.B【解析】

設正三棱柱上下底面的中心分別為,底面邊長與高分別為,利用,可得,進一步得到側面積,再利用基本不等式求最值即可.【詳解】如圖所示.設正三棱柱上下底面的中心分別為,底面邊長與高分別為,則,在中,,化為,,,當且僅當時取等號,此時.故選:B.【點睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學生的計算能力,是一道中檔題.6.C【解析】

根據線面平行與垂直的判定與性質逐個分析即可.【詳解】因為,所以,因為E、F分別是AB、AD的中點,所以,所以,因為面面,所以.選項A、D顯然成立;因為,平面,所以平面,因為平面,所以,所以B項成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項不成立.故選:C【點睛】本題考查直線與平面的位置關系.屬于中檔題.7.A【解析】

令,進而求得,再轉化為函數的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數在研究函數最值中的應用,考查了轉化的數學思想,恰當的用一個未知數來表示和是本題的關鍵,屬于中檔題.8.A【解析】

求出滿足條件的正的面積,再求出滿足條件的正內的點到頂點、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點、、的距離均不小于的圖形平面區域如圖中陰影部分所示,陰影部分區域的面積為.則使取到的點到三個頂點、、的距離都大于的概率是.故選:A.【點睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應用,考查計算能力,屬于中等題.9.C【解析】

根據輔助角公式化簡三角函數式,結合為函數的一條對稱軸可求得,代入輔助角公式得的解析式.根據三角函數圖像平移變換,即可求得函數的解析式.【詳解】函數,由輔助角公式化簡可得,因為為函數圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數的圖象向右平行移動個單位長度可得,則,故選:C.【點睛】本題考查了輔助角化簡三角函數式的應用,三角函數對稱軸的應用,三角函數圖像平移變換的應用,屬于中檔題.10.D【解析】

利用向量模的運算列方程,結合向量數量積的運算,求得實數的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數量積的運算,屬于基礎題.11.B【解析】

首先求出基本事件總數,則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”,記事件“恰好不同時包含字母,,”為,利用對立事件的概率公式計算可得;【詳解】解:從9個球中摸出3個球,則基本事件總數為(個),則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”記事件“恰好不同時包含字母,,”為,則.故選:B【點睛】本題考查了古典概型及其概率計算公式,考查了排列組合的知識,解答的關鍵在于正確理解題意,屬于基礎題.12.A【解析】

設等差數列的公差為,再利用基本量法與題中給的條件列式求解首項與公差,進而求得即可.【詳解】設等差數列的公差為.由得,解得.所以.故選:A【點睛】本題主要考查了等差數列的基本量求解,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據題意可知,直線與直線分別過定點,且這兩條直線互相垂直,由此可知,其交點在以為直徑的圓上,結合圖形求出線段的最大值即可.【詳解】由題可知,直線可化為,所以其過定點,直線可化為,所以其過定點,且滿足,所以直線與直線互相垂直,其交點在以為直徑的圓上,作圖如下:結合圖形可知,線段的最大值為,因為為線段的中點,所以由中點坐標公式可得,所以線段的最大值為.故答案為:【點睛】本題考查過交點的直線系方程、動點的軌跡問題及點與圓的位置關系;考查數形結合思想和運算求解能力;根據圓的定義得到交點在以為直徑的圓上是求解本題的關鍵;屬于中檔題.14.或【解析】

函數的零點方程的根,求出方程的兩根為,,從而可得或,即或.【詳解】函數在區間的零點方程在區間的根,所以,解得:,,因為函數在區間上有且僅有一個零點,所以或,即或.【點睛】本題考查函數的零點與方程根的關系,在求含絕對值方程時,要注意對絕對值內數的正負進行討論.15.1【解析】

首先根據向量的數量積的運算律求出,再根據計算可得;【詳解】解:因為,所以又所以所以故答案為:【點睛】本題考查平面向量的數量積的運算,屬于基礎題.16.【解析】∵=(1,2),=(x,1),則=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.點睛:由向量的數乘和坐標加減法運算求得,然后利用向量共線的坐標表示列式求解x的值.若=(a1,a2),=(b1,b2),則⊥?a1a2+b1b2=1,∥?a1b2﹣a2b1=1.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)由公比表示出,由成等差數列可求得,從而數列的通項公式;(2)求(1)得,然后對和式兩兩并項后利用等差數列的前項和公式可求解.【詳解】(1)∵是等比數列,且成等差數列∴,即∴,解得:或∵,∴∵∴(2)∵∴【點睛】本題考查等比數列的通項公式,考查并項求和法及等差數列的項和公式.本題求數列通項公式所用方法為基本量法,求和是用并項求和法.數列的求和除公式法外,還有錯位相關法、裂項相消法、分組(并項)求和法等等.18.(1),單調性見解析;(2)不存在,理由見解析【解析】

(1)由題意得,即可得;求出函數的導數,再根據、、、分類討論,分別求出、的解集即可得解;(2)假設滿足條件的、存在,不妨設,且,由題意得可得,令(),構造函數(),求導后證明即可得解.【詳解】(1)由題可得函數的定義域為且,由,整理得..(ⅰ)當時,易知,,時.故在上單調遞增,在上單調遞減.(ⅱ)當時,令,解得或,則①當,即時,在上恒成立,則在上遞增.②當,即時,當時,;當時,.所以在上單調遞增,單調遞減,單調遞增.③當,即時,當時,;當時,.所以在上單調遞增,單調遞減,單調遞增.綜上,當時,在上單調遞增,在單調遞減.當時,在及上單調遞增;在上單調遞減.當時,在上遞增.當時,在及上單調遞增;在上遞減.(2)滿足條件的、不存在,理由如下:假設滿足條件的、存在,不妨設,且,則,又,由題可知,整理可得:,令(),構造函數().則,所以在上單調遞增,從而,所以方程無解,即無解.綜上,滿足條件的A、B不存在.【點睛】本題考查了導數的應用,考查了計算能力和轉化化歸思想,屬于中檔題.19.(1)證明見解析(2)證明見解析【解析】

(1)運用絕對值不等式的性質,注意等號成立的條件,即可求得最小值,再運用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到結論,注意等號成立的條件.【詳解】(1)由題意,則函數,又函數的最小值為,即,由柯西不等式得,當且僅當時取“=”.故.(2)由題意,利用基本不等式可得,,,(以上三式當且僅當時同時取“=”)由(1)知,,所以,將以上三式相加得即.【點睛】本題主要考查絕對值不等式、柯西不等式等基礎知識,考查運算能力,屬于中檔題.20.(1);(2)【解析】

(1)由正弦定理可得,,化簡并結合,可求得三者間的關系,代入余弦定理可求得;(2)由(1)可求得,再結合三角形的面積公式,可求出,從而可求出答案.【詳解】(1)因為,所以,整理得:.因為,所以,所以.由余弦定理可得.(2)由(1)知,則,因為的面積是,所以,即,解得,則.故的周長為:.【點睛】本題考查了正弦定理、余弦定理在解三角形中的應用,考查了三角形面積公式的應用,屬于基礎題.21.(1);(2)極小值為,遞減區間為:,遞增區間為.【解析】

(1)由題意得到關于實數

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論