




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遠程授課山西省大同市第一中學2025屆高三下學期期中模塊考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數集,集合,集合,則()A. B. C. D.2.已知(),i為虛數單位,則()A. B.3 C.1 D.53.已知為等差數列,若,,則()A.1 B.2 C.3 D.64.設全集集合,則()A. B. C. D.5.已知定義在上的奇函數滿足:(其中),且在區間上是減函數,令,,,則,,的大小關系(用不等號連接)為()A. B.C. D.6.已知等邊△ABC內接于圓:x2+y2=1,且P是圓τ上一點,則的最大值是()A. B.1 C. D.27.已知復數,若,則的值為()A.1 B. C. D.8.若復數(為虛數單位),則的共軛復數的模為()A. B.4 C.2 D.9.為研究語文成績和英語成績之間是否具有線性相關關系,統計兩科成績得到如圖所示的散點圖(兩坐標軸單位長度相同),用回歸直線近似地刻畫其相關關系,根據圖形,以下結論最有可能成立的是()A.線性相關關系較強,b的值為1.25B.線性相關關系較強,b的值為0.83C.線性相關關系較強,b的值為-0.87D.線性相關關系太弱,無研究價值10.設,則()A. B. C. D.11.若,滿足約束條件,則的最大值是()A. B. C.13 D.12.若復數(是虛數單位),則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線的斜率為________.14.在平面直角坐標系xOy中,已知A0,a,B3,a+415.將底面直徑為4,高為的圓錐形石塊打磨成一個圓柱,則該圓柱的側面積的最大值為__________.16.在的展開式中,項的系數是__________(用數字作答).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)求下列函數的導數:(1)(2)18.(12分)據《人民網》報道,美國國家航空航天局(NASA)發文稱,相比20年前世界變得更綠色了,衛星資料顯示中國和印度的行動主導了地球變綠.據統計,中國新增綠化面積的來自于植樹造林,下表是中國十個地區在去年植樹造林的相關數據.(造林總面積為人工造林、飛播造林、新封山育林、退化林修復、人工更新的面積之和)單位:公頃地區造林總面積造林方式人工造林飛播造林新封山育林退化林修復人工更新內蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重慶2263331006006240063333陜西297642184108336026386516067甘肅325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629寧夏91531589602293882981335北京1906410012400039991053(1)請根據上述數據分別寫出在這十個地區中人工造林面積與造林總面積的比值最大和最小的地區;(2)在這十個地區中,任選一個地區,求該地區新封山育林面積占造林總面積的比值超過的概率;(3)在這十個地區中,從退化林修復面積超過一萬公頃的地區中,任選兩個地區,記X為這兩個地區中退化林修復面積超過六萬公頃的地區的個數,求X的分布列及數學期望.19.(12分)移動支付(支付寶及微信支付)已經漸漸成為人們購物消費的一種支付方式,為調查市民使用移動支付的年齡結構,隨機對100位市民做問卷調查得到列聯表如下:(1)將上列聯表補充完整,并請說明在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡是否有關?(2)在使用移動支付的人群中采用分層抽樣的方式抽取10人做進一步的問卷調查,從這10人隨機中選出3人頒發參與獎勵,設年齡都低于35歲(含35歲)的人數為,求的分布列及期望.(參考公式:(其中)20.(12分)已知橢圓:(),與軸負半軸交于,離心率.(1)求橢圓的方程;(2)設直線:與橢圓交于,兩點,連接,并延長交直線于,兩點,已知,求證:直線恒過定點,并求出定點坐標.21.(12分)如圖,在四棱錐中,側棱底面,,,,是棱的中點.(1)求證:平面;(2)若,點是線段上一點,且,求直線與平面所成角的正弦值.22.(10分)在直角坐標系中,曲線的參數方程為(為參數).點在曲線上,點滿足.(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求動點的軌跡的極坐標方程;(2)點,分別是曲線上第一象限,第二象限上兩點,且滿足,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
可得集合,求出補集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點睛】本題考查了集合的補集和交集的混合運算,屬于基礎題.2.C【解析】
利用復數代數形式的乘法運算化簡得答案.【詳解】由,得,解得.故選:C.【點睛】本題考查復數代數形式的乘法運算,是基礎題.3.B【解析】
利用等差數列的通項公式列出方程組,求出首項和公差,由此能求出.【詳解】∵{an}為等差數列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點睛】本題考查等差數列通項公式求法,考查等差數列的性質等基礎知識,考查運算求解能力,是基礎題.4.A【解析】
先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.【點睛】本題考查集合的基本運算,涉及到補集、交集運算,是一道容易題.5.A【解析】因為,所以,即周期為4,因為為奇函數,所以可作一個周期[-2e,2e]示意圖,如圖在(0,1)單調遞增,因為,因此,選A.點睛:函數對稱性代數表示(1)函數為奇函數,函數為偶函數(定義域關于原點對稱);(2)函數關于點對稱,函數關于直線對稱,(3)函數周期為T,則6.D【解析】
如圖所示建立直角坐標系,設,則,計算得到答案.【詳解】如圖所示建立直角坐標系,則,,,設,則.當,即時等號成立.故選:.【點睛】本題考查了向量的計算,建立直角坐標系利用坐標計算是解題的關鍵.7.D【解析】由復數模的定義可得:,求解關于實數的方程可得:.本題選擇D選項.8.D【解析】
由復數的綜合運算求出,再寫出其共軛復數,然后由模的定義計算模.【詳解】,.故選:D.【點睛】本題考查復數的運算,考查共軛復數與模的定義,屬于基礎題.9.B【解析】
根據散點圖呈現的特點可以看出,二者具有相關關系,且斜率小于1.【詳解】散點圖里變量的對應點分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強的線性相關關系,且直線斜率小于1,故選B.【點睛】本題主要考查散點圖的理解,側重考查讀圖識圖能力和邏輯推理的核心素養.10.D【解析】
結合指數函數及對數函數的單調性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.【點睛】本題考查了幾個數的大小比較,考查了指數函數與對數函數的單調性的應用,屬于基礎題.11.C【解析】
由已知畫出可行域,利用目標函數的幾何意義求最大值.【詳解】解:表示可行域內的點到坐標原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標原點的距離最大,即.故選:.【點睛】本題考查線性規劃問題,考查數形結合的數學思想以及運算求解能力,屬于基礎題.12.A【解析】
將整理成的形式,得到復數所對應的的點,從而可選出所在象限.【詳解】解:,所以所對應的點為在第一象限.故選:A.【點睛】本題考查了復數的乘法運算,考查了復數對應的坐標.易錯點是誤把當成進行計算.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
求出函數的導數,利用導數的幾何意義令,即可求出切線斜率.【詳解】,,,即曲線在處的切線的斜率.故答案為:【點睛】本題考查了導數的幾何意義、導數的運算法則以及基本初等函數的導數,屬于基礎題.14.(-53,【解析】
求出AB的長度,直線方程,結合△ABC的面積為5,轉化為圓心到直線的距離進行求解即可.【詳解】解:AB的斜率k=a+4-a3-0=4=3設△ABC的高為h,則∵△ABC的面積為5,∴S=12|AB|h=即h=2,直線AB的方程為y﹣a=43x,即4x﹣3y+3若圓x2+y2=9上有且僅有四個不同的點C,則圓心O到直線4x﹣3y+3a=0的距離d=|3a|則應該滿足d<R﹣h=3﹣2=1,即|3a|5得|3a|<5得-53<故答案為:(-53,【點睛】本題主要考查直線與圓的位置關系的應用,求出直線方程和AB的長度,轉化為圓心到直線的距離是解決本題的關鍵.15.【解析】
由題意欲使圓柱側面積最大,需使圓柱內接于圓錐.設圓柱的高為h,底面半徑為r,則,將側面積表示成關于的函數,再利用一元二次函數的性質求最值.【詳解】欲使圓柱側面積最大,需使圓柱內接于圓錐.設圓柱的高為h,底面半徑為r,則,所以.∴,當時,的最大值為.故答案為:.【點睛】本題考查圓柱的側面積的最值,考查函數與方程思想、轉化與化歸思想、,考查空間想象能力和運算求解能力,求解時注意將問題轉化為函數的最值問題.16.【解析】的展開式的通項為:.令,得.答案為:-40.點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據條件寫出第r+1項,再由特定項的特點求出r值即可.(2)已知展開式的某項,求特定項的系數.可由某項得出參數項,再由通項寫出第r+1項,由特定項得出r值,最后求出其參數.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)根據復合函數的求導法則可得結果.(2)同樣根據復合函數的求導法則可得結果.【詳解】(1)令,,則,而,,故.(2)令,,則,而,,故,化簡得到.【點睛】本題考查復合函數的導數,此類問題一般是先把函數分解為簡單函數的復合,再根據復合函數的求導法則可得所求的導數,本題屬于容易題.18.(1)人工造林面積與總面積比最大的地區為甘肅省,人工造林面積與總面積比最小的地區為青海省;(2);(3)分布列見詳解,數學期望為【解析】
(1)通過數據的觀察以及計算人工造林面積與造林總面積比值,可得結果.(2)通過數據的觀察以及計算新封山育林面積與造林總面積比值,得出比值超過的地區個數,然后可得結果.(3)計算退化林修復面積超過一萬公頃的地區中選兩個地區總數,退化林修復面積超過六萬公頃的地區的個數為,列出所有取值并計算相應概率,然后可得結果.【詳解】(1)人工造林面積與總面積比最大的地區為甘肅省,人工造林面積與總面積比最小的地區為青海省.(2)記事件A:在這十個地區中,任選一個地區,該地區新封山育林面積占總面積的比值超過根據數據可知:青海地區人工造林面積占總面積比超過,則(3)退化林修復面積超過一萬公頃有6個地區:內蒙、河北、河南、重慶、陜西、新疆,其中退化林修復面積超過六萬公頃有3個地區:內蒙、河北、重慶,所以X的取值為0,1,2所以,,隨機變量X的分布列如下:【點睛】本題考查數據的處理以及離散型隨機變量的分布列與數學期望,審清題意,細心計算,屬基礎題.19.(1)列聯表見解析,在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡有關;(2)分布列見解析,期望為.【解析】
(1)根據題中所給的條件補全列聯表,根據列聯表求出觀測值,把觀測值同臨界值進行比較,得到能在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡有關.(2)首先確定的取值,求出相應的概率,可得分布列和數學期望.【詳解】(1)根據題意及列聯表可得完整的列聯表如下:35歲以下(含35歲)35歲以上合計使用移動支付401050不使用移動支付104050合計5050100根據公式可得,所以在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡有關.(2)根據分層抽樣,可知35歲以下(含35歲)的人數為8人,35歲以上的有2人,所以獲得獎勵的35歲以下(含35歲)的人數為,則的可能為1,2,3,且,,,其分布列為123.【點睛】獨立性檢驗依據的值結合附表數據進行判斷,另外,離散型隨機變量的分布列,在求解的過程中,注意變量的取值以及對應的概率要計算正確,注意離散型隨機變量的期望公式的使用,屬于中檔題目.20.(1)(2)證明見解析;定點坐標為【解析】
(1)由條件直接算出即可(2)由得,,,由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 自然之債協議書
- 蘇州就業協議書
- 退股補充協議書
- 調解道路協議書
- 合伙開餐廳合同協議書
- 移交存款協議書
- 勞務派遣人互助協議書
- 穿越管線協議書
- 湖北省分行合作協議書
- 醫護工作者合同協議書
- 項目平行分包協議書范本
- 讓空氣更清新(教學課件)五年級科學下冊(青島版)
- 2025-2030自愿碳信用交易行業市場現狀供需分析及投資評估規劃分析研究報告
- 2025年中國辦公椅數據監測研究報告
- 自動駕駛車輛的遠程監控與維護系統-全面剖析
- 排他協議合同協議
- 物聯網工程技術考研真題卷100道及答案
- 2025-2030生鮮商超行業市場發展現狀及競爭形勢與投資前景研究報告
- GB/T 5453-2025紡織品織物透氣性的測定
- 臨床教學醫院發展規劃塑造未來醫療教育的新格局
- 第二單元第2課《律動青春》教學設計 -2024-2025學年人教版(2024)初中美術七年級下冊
評論
0/150
提交評論