




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆河南省開封市五縣聯(lián)考第二學期高三摸底考試數(shù)學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設F為雙曲線C:(a>0,b>0)的右焦點,O為坐標原點,以OF為直徑的圓與圓x2+y2=a2交于P、Q兩點.若|PQ|=|OF|,則C的離心率為A. B.C.2 D.2.已知為圓的一條直徑,點的坐標滿足不等式組則的取值范圍為()A. B.C. D.3.現(xiàn)有甲、乙、丙、丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.4.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則5.已知函數(shù)滿足,設,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知雙曲線的左、右頂點分別為,點是雙曲線上與不重合的動點,若,則雙曲線的離心率為()A. B. C.4 D.27.已知集合,,,則()A. B. C. D.8.已知函數(shù),則在上不單調(diào)的一個充分不必要條件可以是()A. B. C.或 D.9.黨的十九大報告明確提出:在共享經(jīng)濟等領域培育增長點、形成新動能.共享經(jīng)濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經(jīng)濟現(xiàn)象.為考察共享經(jīng)濟對企業(yè)經(jīng)濟活躍度的影響,在四個不同的企業(yè)各取兩個部門進行共享經(jīng)濟對比試驗,根據(jù)四個企業(yè)得到的試驗數(shù)據(jù)畫出如下四個等高條形圖,最能體現(xiàn)共享經(jīng)濟對該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.10.已知數(shù)列的首項,且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有11.木匠師傅對一個圓錐形木件進行加工后得到一個三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.12.閱讀下側程序框圖,為使輸出的數(shù)據(jù)為31,則①處應填的數(shù)字為A.4 B.5 C.6 D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若函數(shù)恰有4個零點,則實數(shù)的取值范圍是________.14.已知函數(shù),若,則___________.15.已知的展開式中項的系數(shù)與項的系數(shù)分別為135與,則展開式所有項系數(shù)之和為______.16.正四面體的一個頂點是圓柱上底面的圓心,另外三個頂點圓柱下底面的圓周上,記正四面體的體積為,圓柱的體積為,則的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設橢圓的離心率為,圓與軸正半軸交于點,圓在點處的切線被橢圓截得的弦長為.(1)求橢圓的方程;(2)設圓上任意一點處的切線交橢圓于點,試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.18.(12分)已知函數(shù).⑴當時,求函數(shù)的極值;⑵若存在與函數(shù),的圖象都相切的直線,求實數(shù)的取值范圍.19.(12分)設函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.20.(12分)已知橢圓的離心率為,且過點.(1)求橢圓C的標準方程;(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設O為坐標原點,試判斷以OD為直徑的圓與點M的位置關系.21.(12分)秉持“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念,為推動新能源汽車產(chǎn)業(yè)迅速發(fā)展,有必要調(diào)查研究新能源汽車市場的生產(chǎn)與銷售.下圖是我國某地區(qū)年至年新能源汽車的銷量(單位:萬臺)按季度(一年四個季度)統(tǒng)計制成的頻率分布直方圖.(1)求直方圖中的值,并估計銷量的中位數(shù);(2)請根據(jù)頻率分布直方圖估計新能源汽車平均每個季度的銷售量(同一組數(shù)據(jù)用該組中間值代表),并以此預計年的銷售量.22.(10分)已知函數(shù).(1)討論的零點個數(shù);(2)證明:當時,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
準確畫圖,由圖形對稱性得出P點坐標,代入圓的方程得到c與a關系,可求雙曲線的離心率.【詳解】設與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點在圓上,,即.,故選A.【點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運算繁瑣,準確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習,才能在解決此類問題時事半功倍,信手拈來.2、D【解析】
首先將轉化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點與圓心距離,數(shù)形結合即可得到答案.【詳解】作出可行域如圖所示設圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【點睛】本題考查與線性規(guī)劃相關的取值范圍問題,涉及到向量的線性運算、數(shù)量積、點到直線的距離等知識,考查學生轉化與劃歸的思想,是一道中檔題.3、B【解析】
求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,利用古典概型及其概率的計算公式,即可求解.【詳解】由題意,現(xiàn)有甲乙丙丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【點睛】本題主要考查了排列組合的應用,以及古典概型及其概率的計算問題,其中解答中合理應用排列、組合的知識求得基本事件的總數(shù)和所求事件所包含的基本事件的個數(shù),利用古典概型及其概率的計算公式求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.4、C【解析】
根據(jù)線面的位置關系,結合線面平行的判定定理、平行線的性質(zhì)進行判斷即可.【詳解】A:當時,也可以滿足∥,b∥,故本命題不正確;B:當時,也可以滿足,,故本命題不正確;C:根據(jù)平行線的性質(zhì)可知:當∥,,時,能得到,故本命題是正確的;D:當時,也可以滿足,b∥,故本命題不正確.故選:C【點睛】本題考查了線面的位置關系,考查了平行線的性質(zhì),考查了推理論證能力.5、B【解析】
結合函數(shù)的對應性,利用充分條件和必要條件的定義進行判斷即可.【詳解】解:若,則,即成立,若,則由,得,則“”是“”的必要不充分條件,故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結合函數(shù)的對應性是解決本題的關鍵,屬于基礎題.6、D【解析】
設,,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡可得,即可求出離心率.【詳解】解:設,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點睛】本題考查雙曲線的方程和性質(zhì),考查了斜率的計算,離心率的求法,屬于基礎題和易錯題.7、D【解析】
根據(jù)集合的基本運算即可求解.【詳解】解:,,,則故選:D.【點睛】本題主要考查集合的基本運算,屬于基礎題.8、D【解析】
先求函數(shù)在上不單調(diào)的充要條件,即在上有解,即可得出結論.【詳解】,若在上不單調(diào),令,則函數(shù)對稱軸方程為在區(qū)間上有零點(可以用二分法求得).當時,顯然不成立;當時,只需或,解得或.故選:D.【點睛】本題考查含參數(shù)的函數(shù)的單調(diào)性及充分不必要條件,要注意二次函數(shù)零點的求法,屬于中檔題.9、D【解析】根據(jù)四個列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經(jīng)濟活躍度的差異最大,它最能體現(xiàn)共享經(jīng)濟對該部門的發(fā)展有顯著效果,故選D.10、C【解析】
根據(jù)等差數(shù)列和等比數(shù)列的定義進行判斷即可.【詳解】A:當時,,顯然符合是等差數(shù)列,但是此時不成立,故本說法不正確;B:當時,,顯然符合是等比數(shù)列,但是此時不成立,故本說法不正確;C:當時,因此有常數(shù),因此是等差數(shù)列,因此當不是等差數(shù)列時,一定有,故本說法正確;D:當時,若時,顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【點睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎題.11、C【解析】
由三視圖知幾何體是一個從圓錐中截出來的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點睛】本題考查了三視圖還原幾何體及體積求解問題,考查了學生空間想象,數(shù)學運算能力,難度一般.12、B【解析】考點:程序框圖.分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運行過程中各變量的值的變化情況,不難給出答案.解:程序在運行過程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當i<5時退出,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象,利用數(shù)形結合思想進行求解即可.【詳解】函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象如下圖所示:由圖象可知:實數(shù)的取值范圍是.故答案為:【點睛】本題考查了已知函數(shù)零點個數(shù)求參數(shù)取值范圍問題,考查了數(shù)形結合思想和轉化思想.14、【解析】
根據(jù)題意,利用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,利用函數(shù)奇偶性的性質(zhì)求解即可.【詳解】因為函數(shù),其定義域為,所以其定義域關于原點對稱,又,所以函數(shù)為奇函數(shù),因為,所以.故答案為:【點睛】本題考查函數(shù)奇偶性的判斷及其性質(zhì);考查運算求解能力;熟練掌握函數(shù)奇偶性的判斷方法是求解本題的關鍵;屬于中檔題、常考題型.15、64【解析】
由題意先求得的值,再令求出展開式中所有項的系數(shù)和.【詳解】的展開式中項的系數(shù)與項的系數(shù)分別為135與,,,由兩式可組成方程組,解得或,令,求得展開式中所有的系數(shù)之和為.故答案為:64【點睛】本題考查了二項式定理,考查了賦值法求多項式展開式的系數(shù)和,屬于基礎題.16、【解析】
設正四面體的棱長為,求出底面外接圓的半徑與高,代入體積公式求解.【詳解】解:設正四面體的棱長為,則底面積為,底面外接圓的半徑為,高為.∴正四面體的體積,圓柱的體積.則.故答案為:.【點睛】本題主要考查多面體與旋轉體體積的求法,考查計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】
(I)結合離心率,得到a,b,c的關系,計算A的坐標,計算切線與橢圓交點坐標,代入橢圓方程,計算參數(shù),即可.(II)分切線斜率存在與不存在討論,設出M,N的坐標,設出切線方程,結合圓心到切線距離公式,得到m,k的關系式,將直線方程代入橢圓方程,利用根與系數(shù)關系,表示,結合三角形相似,證明結論,即可.【詳解】(Ⅰ)設橢圓的半焦距為,由橢圓的離心率為知,,∴橢圓的方程可設為.易求得,∴點在橢圓上,∴,解得,∴橢圓的方程為.(Ⅱ)當過點且與圓相切的切線斜率不存在時,不妨設切線方程為,由(Ⅰ)知,,,∴.當過點且與圓相切的切線斜率存在時,可設切線的方程為,,∴,即.聯(lián)立直線和橢圓的方程得,∴,得.∵,∴,,∴.綜上所述,圓上任意一點處的切線交橢圓于點,都有.在中,由與相似得,為定值.【點睛】本道題考查了橢圓方程的求解,考查了直線與橢圓位置關系,考查了向量的坐標運算,難度偏難.18、(1)當時,函數(shù)取得極小值為,無極大值;(2)【解析】試題分析:(1),通過求導分析,得函數(shù)取得極小值為,無極大值;(2),所以,通過求導討論,得到的取值范圍是.試題解析:(1)函數(shù)的定義域為當時,,所以所以當時,,當時,,所以函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以當時,函數(shù)取得極小值為,無極大值;(2)設函數(shù)上點與函數(shù)上點處切線相同,則所以所以,代入得:設,則不妨設則當時,,當時,所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,代入可得:設,則對恒成立,所以在區(qū)間上單調(diào)遞增,又所以當時,即當時,又當時因此當時,函數(shù)必有零點;即當時,必存在使得成立;即存在使得函數(shù)上點與函數(shù)上點處切線相同.又由得:所以單調(diào)遞減,因此所以實數(shù)的取值范圍是.19、(1)整數(shù)的最大值為;(2)見解析.【解析】
(1)將不等式變形為,構造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結論得到,利用不等式的基本性質(zhì)可證得結論.【詳解】(1)由得,令,,令,對恒成立,所以,函數(shù)在上單調(diào)遞增,,,,,故存在使得,即,從而當時,有,,所以,函數(shù)在上單調(diào)遞增;當時,有,,所以,函數(shù)在上單調(diào)遞減.所以,,,因此,整數(shù)的最大值為;(2)由(1)知恒成立,,令則,,,,,上述等式全部相加得,所以,,因此,【點睛】本題考查導數(shù)在函數(shù)單調(diào)性、最值中的應用,以及放縮法證明不等式的技巧,屬于難題.20、(1)(2)點在以為直徑的圓上【解析】
(1)根據(jù)題意列出關于,,的方程組,解出,,的值,即可得到橢圓的標準方程;(2)設點,,則,,求出直線的方程,進而求出點的坐標,再利用中點坐標公式得到點的坐標,下面結合點在橢圓上證出,所以點在以為直徑的圓上.【詳解】(1)由題意可知,,解得,橢圓的標準方程為:.(2)設點,,則,,直線的斜率為,直線的方程為:,令得,,點的坐標為,,點的坐標為,,,,又點,在橢圓上,,,,點在以為直徑的圓上.【點睛】本題主要考查了橢圓方程,考查了中點坐標公式,以及
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年航空貨物運輸合同范本
- 2025木材購銷類合同模板
- 2025租賃合同與買賣合同的關聯(lián)性分析
- 2025瓷磚買賣合同樣本
- 華潤電力測試題
- 網(wǎng)絡犯罪偵查與數(shù)字取證考核試卷
- 2025租賃合同印花稅新政策
- 2025攜手創(chuàng)業(yè)協(xié)議范本合作合同
- 2025年度商業(yè)綜合體廣告牌制作與安裝合同
- 2025試析網(wǎng)絡購物中的消費者合同關系研究
- 《將軍胡同》閱讀試題及答案
- 2022年常德市漢壽縣社區(qū)工作者招聘考試試題
- 小學畢業(yè)班數(shù)學老師家長會完美版資料
- 福建土樓介紹
- 文藝復興時期服裝風格
- 中華茶文化智慧樹知到答案章節(jié)測試2023年青島職業(yè)技術學院
- 《愛麗絲漫游奇境》閱讀指導
- 非物質(zhì)文化遺產(chǎn)代表性項目申報書
- VBOXTools軟件操作手冊
- GB/T 15706.2-2007機械安全基本概念與設計通則第2部分:技術原則
- 卵巢惡性腫瘤腹腔鏡手術課件
評論
0/150
提交評論