




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河北省衡水市重點高三下學期第二次質量調研考試數學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數是奇函數,且,若對,恒成立,則的取值范圍是()A. B. C. D.2.一個幾何體的三視圖如圖所示,正視圖、側視圖和俯視圖都是由一個邊長為的正方形及正方形內一段圓弧組成,則這個幾何體的表面積是()A. B. C. D.3.定義在上的偶函數,對,,且,有成立,已知,,,則,,的大小關系為()A. B. C. D.4.為得到函數的圖像,只需將函數的圖像()A.向右平移個長度單位 B.向右平移個長度單位C.向左平移個長度單位 D.向左平移個長度單位5.正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側棱長為,則它的外接球的表面積為()A. B. C. D.6.已知為虛數單位,復數滿足,則復數在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件8.已知等差數列的前n項和為,且,則()A.4 B.8 C.16 D.29.設為自然對數的底數,函數,若,則()A. B. C. D.10.如圖所示,直三棱柱的高為4,底面邊長分別是5,12,13,當球與上底面三條棱都相切時球心到下底面距離為8,則球的體積為()A.1605π3 B.64211.若實數滿足不等式組則的最小值等于()A. B. C. D.12.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,滿足,,,則向量在的夾角為______.14.正四面體的一個頂點是圓柱上底面的圓心,另外三個頂點圓柱下底面的圓周上,記正四面體的體積為,圓柱的體積為,則的值是______.15.已知函數為奇函數,則______.16.展開式中的系數為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設,,其中.(1)當時,求的值;(2)對,證明:恒為定值.18.(12分)求函數的最大值.19.(12分)在平面直角坐標系中,直線的參數方程為(為參數),直線與曲線交于兩點.(1)求的長;(2)在以為極點,軸的正半軸為極軸建立的極坐標系中,設點的極坐標為,求點到線段中點的距離.20.(12分)已知函數.(1)求不等式的解集;(2)若關于的不等式在區間內無解,求實數的取值范圍.21.(12分)某企業原有甲、乙兩條生產線,為了分析兩條生產線的效果,先從兩條生產線生產的大量產品中各抽取了100件產品作為樣本,檢測一項質量指標值.該項指標值落在內的產品視為合格品,否則為不合格品.乙生產線樣本的頻數分布表質量指標合計頻數2184814162100(1)根據甲生產線樣本的頻率分布直方圖,以從樣本中任意抽取一件產品且為合格品的頻率近似代替從甲生產線生產的產品中任意抽取一件產品且為合格品的概率,估計從甲生產線生產的產品中任取5件恰有2件為合格品的概率;(2)現在該企業為提高合格率欲只保留其中一條生產線,根據上述圖表所提供的數據,完成下面的列聯表,并判斷是否有90%把握認為該企業生產的這種產品的質量指標值與生產線有關?若有90%把握,請從合格率的角度分析保留哪條生產線較好?甲生產線乙生產線合計合格品不合格品合計附:,.0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87922.(10分)已知函數.(1)若對任意x0,f(x)0恒成立,求實數a的取值范圍;(2)若函數f(x)有兩個不同的零點x1,x2(x1x2),證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
先根據函數奇偶性求得,利用導數判斷函數單調性,利用函數單調性求解不等式即可.【詳解】因為函數是奇函數,所以函數是偶函數.,即,又,所以,.函數的定義域為,所以,則函數在上為單調遞增函數.又在上,,所以為偶函數,且在上單調遞增.由,可得,對恒成立,則,對恒成立,,得,所以的取值范圍是.故選:A.【點睛】本題考查利用函數單調性求解不等式,根據方程組法求函數解析式,利用導數判斷函數單調性,屬壓軸題.2、C【解析】
畫出直觀圖,由球的表面積公式求解即可【詳解】這個幾何體的直觀圖如圖所示,它是由一個正方體中挖掉個球而形成的,所以它的表面積為.故選:C【點睛】本題考查三視圖以及幾何體的表面積的計算,考查空間想象能力和運算求解能力.3、A【解析】
根據偶函數的性質和單調性即可判斷.【詳解】解:對,,且,有在上遞增因為定義在上的偶函數所以在上遞減又因為,,所以故選:A【點睛】考查偶函數的性質以及單調性的應用,基礎題.4、D【解析】,所以要的函數的圖象,只需將函數的圖象向左平移個長度單位得到,故選D5、C【解析】
如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設球半徑為,則,解得,故.故選:.【點睛】本題考查了四棱錐的外接球問題,意在考查學生的空間想象能力和計算能力.6、B【解析】
求出復數,得出其對應點的坐標,確定所在象限.【詳解】由題意,對應點坐標為,在第二象限.故選:B.【點睛】本題考查復數的幾何意義,考查復數的除法運算,屬于基礎題.7、B【解析】
根據誘導公式化簡再分析即可.【詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點睛】本題考查充分與必要條件的判定以及誘導公式的運用,屬于基礎題.8、A【解析】
利用等差的求和公式和等差數列的性質即可求得.【詳解】.故選:.【點睛】本題考查等差數列的求和公式和等差數列的性質,考查基本量的計算,難度容易.9、D【解析】
利用與的關系,求得的值.【詳解】依題意,所以故選:D【點睛】本小題主要考查函數值的計算,屬于基礎題.10、A【解析】
設球心為O,三棱柱的上底面ΔA1B1C1的內切圓的圓心為O1,該圓與邊B【詳解】如圖,設三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設球心為O,則由球的幾何知識得ΔOO1M所以OM=2即球O的半徑為25所以球O的體積為43故選A.【點睛】本題考查與球有關的組合體的問題,解答本題的關鍵有兩個:(1)構造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內求出球的半徑,這是解決與球有關的問題時常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內切圓的半徑r=a+b-c11、A【解析】
首先畫出可行域,利用目標函數的幾何意義求的最小值.【詳解】解:作出實數,滿足不等式組表示的平面區域(如圖示:陰影部分)由得,由得,平移,易知過點時直線在上截距最小,所以.故選:A.【點睛】本題考查了簡單線性規劃問題,求目標函數的最值先畫出可行域,利用幾何意義求值,屬于中檔題.12、C【解析】
根據列方程,由此求得的值,進而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點睛】本小題主要考查向量垂直的表示,考查向量數量積的運算,考查向量模的求法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
把平方利用數量積的運算化簡即得解.【詳解】因為,,,所以,∴,∴,因為所以.故答案為:【點睛】本題主要考查平面向量的數量積的運算法則,考查向量的夾角的計算,意在考查學生對這些知識的理解掌握水平.14、【解析】
設正四面體的棱長為,求出底面外接圓的半徑與高,代入體積公式求解.【詳解】解:設正四面體的棱長為,則底面積為,底面外接圓的半徑為,高為.∴正四面體的體積,圓柱的體積.則.故答案為:.【點睛】本題主要考查多面體與旋轉體體積的求法,考查計算能力,屬于中檔題.15、【解析】
利用奇函數的定義得出,結合對數的運算性質可求得實數的值.【詳解】由于函數為奇函數,則,即,,整理得,解得.當時,真數,不合乎題意;當時,,解不等式,解得或,此時函數的定義域為,定義域關于原點對稱,合乎題意.綜上所述,.故答案為:.【點睛】本題考查利用函數的奇偶性求參數,考查了函數奇偶性的定義和對數運算性質的應用,考查計算能力,屬于中等題.16、【解析】
把按照二項式定理展開,可得的展開式中的系數.【詳解】解:,故它的展開式中的系數為,故答案為:.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)1(2)1【解析】分析:(1)當時可得,可得.(2)先得到關系式,累乘可得,從而可得,即為定值.詳解:(1)當時,,又,所以.(2)即,由累乘可得,又,所以.即恒為定值1.點睛:本題考查組合數的有關運算,解題時要注意所給出的的定義,并結合組合數公式求解.由于運算量較大,解題時要注意運算的準確性,避免出現錯誤.18、【解析】
試題分析:由柯西不等式得試題解析:因為,所以.等號當且僅當,即時成立.所以的最大值為.考點:柯西不等式求最值19、(1);(2).【解析】
(1)將直線的參數方程化為直角坐標方程,由點到直線距離公式可求得圓心到直線距離,結合垂徑定理即可求得的長;(2)將的極坐標化為直角坐標,將直線方程與圓的方程聯立,求得直線與圓的兩個交點坐標,由中點坐標公式求得的坐標,再根據兩點間距離公式即可求得.【詳解】(1)直線的參數方程為(為參數),化為直角坐標方程為,即直線與曲線交于兩點.則圓心坐標為,半徑為1,則由點到直線距離公式可知,所以.(2)點的極坐標為,化為直角坐標可得,直線的方程與曲線的方程聯立,化簡可得,解得,所以兩點坐標為,所以,由兩點間距離公式可得.【點睛】本題考查了參數方程與普通方程轉化,極坐標與直角坐標的轉化,點到直線距離公式應用,兩點間距離公式的應用,直線與圓交點坐標求法,屬于基礎題.20、(1);(2).【解析】
(1)只需分,,三種情況討論即可;(2)在區間上恒成立,轉化為,只需求出即可.【詳解】(1)當時,,此時不等式無解;當時,,由得;當時,,由得,綜上,不等式的解集為;(2)依題意,在區間上恒成立,則,當時,;當時,,所以當時,,由得或,所以實數的取值范圍為.【點睛】本題考查絕對值不等式的解法、不等式恒成立問題,考查學生分類討論與轉化與化歸的思想,是一道基礎題.21、(1)0.0081(2)見解析,保留乙生產線較好.【解析】
(1)先求出任取一件產品為合格品的頻率,“從甲生產線生產的產品中任取5件,恰有2件為合格品”就相當于進行5次獨立重復試驗,恰好發生2次的概率用二項分布概率即可解決.(2)獨立性檢驗算出的觀測值即可判斷.【詳解】(1)根據甲生產線樣本的頻率分布直方圖,樣本中任取一件產品為合格品的頻率為:.設“從甲生產線生產的產品中任取一件且為合格品”為事件,事件發生的概率為,則由樣本可估計.那么“從甲生產線生產的產品中任取5件,恰有2件為合格品”就相當于進行5次獨立重復試驗,事件恰好發生2次,其概率為:.(2)列聯表:甲生產線乙生產線合計合格品9096186不合格品10414合計100100200的觀測值,∵,,∴有90%把握認為該企業生產的這種產品的質量指標值與生產線有關.由(1)知甲生產線的合格率為0.9,乙生產線的合格率為,∵,∴保留乙生產線較好.【點睛】此題考查獨立重復性檢驗二項分布概率,獨立性檢驗等知識點,認準特征代入公式即可,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025《白酒代銷合同范本》
- 2025地平建設合同模板
- 2025國內銷售合同范本全書
- 2025家政服務雇傭合同范本
- 2025電子產品銷售合同書范本
- 《2025房產抵押借款合同》
- 2025YY項目混凝土結構加固施工合同
- 中國第二十冶金建設公司綜合學校高中分校高中英語:八2單元練習題
- 2025年勞動合同解除模板參考
- 2025中級經濟師人力資源管理備考知識點:合同解除
- 野外生存2-1課件
- 學校食堂從業人員培訓測試題
- 辭職報告辭職信
- 中小學校崗位安全工作指導手冊1
- 化工儀表及自動化第六版-課后-答案
- 2021年新湘教版九年級數學中考總復習教案
- DB32∕T 4073-2021 建筑施工承插型盤扣式鋼管支架安全技術規程
- 現代漢語_短語PPT課件
- 分子生物學教學課件:噬菌體調控
- 柳工挖掘機說明書_圖文
- Let-It-Go中英文完整歌詞
評論
0/150
提交評論