2025屆上海市崇明區高三5月考前適應性考試數學試題試卷_第1頁
2025屆上海市崇明區高三5月考前適應性考試數學試題試卷_第2頁
2025屆上海市崇明區高三5月考前適應性考試數學試題試卷_第3頁
2025屆上海市崇明區高三5月考前適應性考試數學試題試卷_第4頁
2025屆上海市崇明區高三5月考前適應性考試數學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆上海市崇明區高三5月考前適應性考試數學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數列的前項和為,若,則等差數列公差()A.2 B. C.3 D.42.已知復數,則()A. B. C. D.3.已知函數,若函數的圖象恒在軸的上方,則實數的取值范圍為()A. B. C. D.4.雙曲線:(,)的一個焦點為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.5.已知集合,,則A. B.C. D.6.《九章算術》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設,假設金箠由粗到細各尺重量依次成等差數列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤7.函數在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-28.一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數據在上的頻率為,則估計樣本在、內的數據個數共有()A. B. C. D.9.已知等差數列{an},則“a2>a1”是“數列{an}為單調遞增數列”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件10.已知集合,集合,則()A. B. C. D.11.已知隨機變量服從正態分布,,()A. B. C. D.12.已知角的終邊經過點P(),則sin()=A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知△ABC得三邊長成公比為2的等比數列,則其最大角的余弦值為_____.14.已知數列的各項均為正數,記為數列的前項和,若,,則______.15.已知橢圓與雙曲線(,)有相同的焦點,其左、右焦點分別為、,若橢圓與雙曲線在第一象限內的交點為,且,則雙曲線的離心率為__________.16.已知一個正四棱錐的側棱與底面所成的角為,側面積為,則該棱錐的體積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為,準線與軸交于點,點在拋物線上,直線與拋物線交于另一點.(1)設直線,的斜率分別為,,求證:常數;(2)①設的內切圓圓心為的半徑為,試用表示點的橫坐標;②當的內切圓的面積為時,求直線的方程.18.(12分)已知動點到定點的距離比到軸的距離多.(1)求動點的軌跡的方程;(2)設,是軌跡在上異于原點的兩個不同點,直線和的傾斜角分別為和,當,變化且時,證明:直線恒過定點,并求出該定點的坐標.19.(12分)如圖,在平行四邊形中,,,現沿對角線將折起,使點A到達點P,點M,N分別在直線,上,且A,B,M,N四點共面.(1)求證:;(2)若平面平面,二面角平面角大小為,求直線與平面所成角的正弦值.20.(12分)設函數.(1)當時,求不等式的解集;(2)當時,求實數的取值范圍.21.(12分)(某工廠生產零件A,工人甲生產一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產一件零件A,是一等品、二等品、三等品的概率分別為.己知生產一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據生產一件零件A給工廠帶來的效益的期望值判斷甲乙技術的好壞;(2)為鼓勵工人提高技術,工廠進行技術大賽,最后甲乙兩人進入了決賽.決賽規則是:每一輪比賽,甲乙各生產一件零件A,如果一方生產的零件A品級優干另一方生產的零件,則該方得分1分,另一方得分-1分,如果兩人生產的零件A品級一樣,則兩方都不得分,當一方總分為4分時,比賽結束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.22.(10分)在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:ρcos2θ=4asinθ?(a>0),直線l的參數方程為x=-2+22t,y=-1+(I)寫出曲線C的直角坐標方程和直線l的普通方程(不要求具體過程);(II)設P(-2,-1),若|PM|,|MN|,|PN|成等比數列,求a的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據等差數列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點睛】本題主要考查了等差數列的求和公式,考查了推理能力與計算能力,屬于中檔題.2.B【解析】

利用復數除法、加法運算,化簡求得,再求得【詳解】,故.故選:B【點睛】本小題主要考查復數的除法運算、加法運算,考查復數的模,屬于基礎題.3.B【解析】

函數的圖象恒在軸的上方,在上恒成立.即,即函數的圖象在直線上方,先求出兩者相切時的值,然后根據變化時,函數的變化趨勢,從而得的范圍.【詳解】由題在上恒成立.即,的圖象永遠在的上方,設與的切點,則,解得,易知越小,圖象越靠上,所以.故選:B.【點睛】本題考查函數圖象與不等式恒成立的關系,考查轉化與化歸思想,首先函數圖象轉化為不等式恒成立,然后不等式恒成立再轉化為函數圖象,最后由極限位置直線與函數圖象相切得出參數的值,然后得出參數范圍.4.A【解析】

根據題意得到,化簡得到,得到答案.【詳解】根據題意知:焦點到漸近線的距離為,故,故漸近線為.故選:.【點睛】本題考查了直線和圓的位置關系,雙曲線的漸近線,意在考查學生的計算能力和轉化能力.5.D【解析】

因為,,所以,,故選D.6.B【解析】

依題意,金箠由粗到細各尺重量構成一個等差數列,則,由此利用等差數列性質求出結果.【詳解】設金箠由粗到細各尺重量依次所成得等差數列為,設首項,則,公差,.故選B【點睛】本題考查了等差數列的通項公式,考查了推理能力與計算能力,屬于基礎題.7.B【解析】

由函數解析式中含絕對值,所以去絕對值并畫出函數圖象,結合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數的圖象如下所示;由函數圖像可知,當時,有最大值,當時,有最小值.故選:B.【點睛】本題考查了絕對值函數圖象的畫法,由函數圖象求函數的最值,屬于基礎題.8.B【解析】

計算出樣本在的數據個數,再減去樣本在的數據個數即可得出結果.【詳解】由題意可知,樣本在的數據個數為,樣本在的數據個數為,因此,樣本在、內的數據個數為.故選:B.【點睛】本題考查利用頻數分布表計算頻數,要理解頻數、樣本容量與頻率三者之間的關系,考查計算能力,屬于基礎題.9.C【解析】試題分析:根據充分條件和必要條件的定義進行判斷即可.解:在等差數列{an}中,若a2>a1,則d>0,即數列{an}為單調遞增數列,若數列{an}為單調遞增數列,則a2>a1,成立,即“a2>a1”是“數列{an}為單調遞增數列”充分必要條件,故選C.考點:必要條件、充分條件與充要條件的判斷.10.C【解析】

求出集合的等價條件,利用交集的定義進行求解即可.【詳解】解:∵,,∴,故選:C.【點睛】本題主要考查了對數的定義域與指數不等式的求解以及集合的基本運算,屬于基礎題.11.B【解析】

利用正態分布密度曲線的對稱性可得出,進而可得出結果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態分布密度曲線的對稱性求概率,屬于基礎題.12.A【解析】

由題意可得三角函數的定義可知:,,則:本題選擇A選項.二、填空題:本題共4小題,每小題5分,共20分。13.-【解析】試題分析:根據題意設三角形的三邊長分別設為為a,2a,2a,∵2a>2a>a,∴2a所對的角為最大角,設為θ,則根據余弦定理得考點:余弦定理及等比數列的定義.14.63【解析】

對進行化簡,可得,再根據等比數列前項和公式進行求解即可【詳解】由數列為首項為,公比的等比數列,所以63【點睛】本題考查等比數列基本量的求法,當處理復雜因式時,常用基本方法為:因式分解,約分。但解題本質還是圍繞等差和等比的基本性質15.【解析】

先根據橢圓得出焦距,結合橢圓的定義求出,結合雙曲線的定義求出雙曲線的實半軸,最后利用離心率的公式求出離心率即可.【詳解】解:因為橢圓,則焦點為,又因為橢圓與雙曲線(,)有相同的焦點,橢圓與雙曲線在第一象限內的交點為,且,在橢圓中:由橢圓的定義:在雙曲線中:,所以雙曲線的實軸長為:,實半軸為則雙曲線的離心率為:.故答案為:【點睛】本題主要考查橢圓與雙曲線的定義,考查離心率的求解,利用定義解決綜合問題.16.【解析】

如圖所示,正四棱錐,為底面的中心,點為的中點,則,設,根據正四棱錐的側面積求出的值,再利用勾股定理求得正四棱錐的高,代入體積公式,即可得到答案.【詳解】如圖所示,正四棱錐,為底面的中心,點為的中點,則,設,,,,,,.故答案為:.【點睛】本題考查棱錐的側面積和體積,考查函數與方程思想、轉化與化歸思想,考查運算求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2)①;②.【解析】

(1)設過的直線交拋物線于,,聯立,利用直線的斜率公式和韋達定理表示出,化簡即可;(2)由(1)知點在軸上,故,設出直線方程,求出交點坐標,因為內心到三角形各邊的距離相等且均為內切圓半徑,列出方程組求解即可.【詳解】(1)設過的直線交拋物線于,,聯立方程組,得:.于是,有:,又,;(2)①由(1)知點在軸上,故,聯立的直線方程:.,又點在拋物線上,得,又,;②由題得,(解法一)所以直線的方程為(解法二)設內切圓半徑為,則.設直線的斜率為,則:直線的方程為:代入直線的直線方程,可得于是有:得,又由(1)可設內切圓的圓心為則,即:,解得:所以,直線的方程為:.【點睛】本題主要考查了拋物線的性質,直線與拋物線相關的綜合問題的求解,考查了學生的運算求解與邏輯推理能力.18.(1)或;(2)證明見解析,定點【解析】

(1)設,由題意可知,對的正負分情況討論,從而求得動點的軌跡的方程;(2)設其方程為,與拋物線方程聯立,利用韋達定理得到,所以,所以直線的方程可表示為,即,所以直線恒過定點.【詳解】(1)設,動點到定點的距離比到軸的距離多,,時,解得,時,解得.動點的軌跡的方程為或(2)證明:如圖,設,,由題意得(否則)且,所以直線的斜率存在,設其方程為,將與聯立消去,得,由韋達定理知,,①顯然,,,,將①式代入上式整理化簡可得:,所以,此時,直線的方程可表示為,即,所以直線恒過定點.【點睛】本題主要考查了動點軌跡,考查了直線與拋物線的綜合,是中檔題.19.(1)證明見解析;(2)【解析】

(1)根據余弦定理,可得,利用//,可得//平面,然后利用線面平行的性質定理,//,最后可得結果.(2)根據二面角平面角大小為,可知N為的中點,然后利用建系,計算以及平面的一個法向量,利用向量的夾角公式,可得結果.【詳解】(1)不妨設,則,在中,,則,因為,所以,因為//,且A、B、M、N四點共面,所以//平面.又平面平面,所以//.而,.(2)因為平面平面,且,所以平面,,因為,所以平面,,因為,平面與平面夾角為,所以,在中,易知N為的中點,如圖,建立空間直角坐標系,則,,,,,,,,設平面的一個法向量為,則由,令,得.設與平面所成角為,則.【點睛】本題考查線面平行的性質定理以及線面角,熟練掌握利用建系的方法解決幾何問題,將幾何問題代數化,化繁為簡,屬中檔題.20.(1)(2)當時,的取值范圍為;當時,的取值范圍為.【解析】

(1)當時,分類討論把不等式化為等價不等式組,即可求解.(2)由絕對值的三角不等式,可得,當且僅當時,取“”,分類討論,即可求解.【詳解】(1)當時,,不等式可化為或或,解得不等式的解集為.(2)由絕對值的三角不等式,可得,當且僅當時,取“”,所以當時,的取值范圍為;當時,的取值范圍為.【點睛】本題主要考查了含絕對值的不等式的求解,以及絕對值三角不等式的應用,其中解答中熟記含絕對值不等式的解法,以及合理應用絕對值的三角不等式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.21.(1)乙的技術更好,見解析(2)①,;②【解析】

(1)列出分布列,求出期望,比較大小即可;(2)①直接根據概率的意義可得P0,P8;②設每輪比賽甲得分為,求出每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差數列,根據可得答案.【詳解】(1)記甲乙各生產一件零件給工廠帶來的效益分別為元、元,隨機變量,的分布列分別為10521052所以,,所以,即乙的技術更好(2)①表示的是甲得分時,甲最終獲勝的概率,所以,表示的是甲得4分時,甲最終獲勝的概率,所以;②設每輪比賽甲得分為,則每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,所以甲得時,最終獲勝有以下三種情況:(1)下一輪得1分并最終獲勝,概率為;(2)下一輪得0分并最終獲勝,概率為;(3)下一輪得分并最終獲勝,概率為;所以,所以是等差數列,則,即決賽甲獲勝的概率是.【點睛】本題考查離散型隨機變量的分布列和期望,考查數列遞推關系的應用,是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論