浙江省衢州市2025屆高考模擬考試數學試題理工類試卷_第1頁
浙江省衢州市2025屆高考模擬考試數學試題理工類試卷_第2頁
浙江省衢州市2025屆高考模擬考試數學試題理工類試卷_第3頁
浙江省衢州市2025屆高考模擬考試數學試題理工類試卷_第4頁
浙江省衢州市2025屆高考模擬考試數學試題理工類試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省衢州市2025屆高考模擬考試數學試題(理工類)試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數、滿足約束條件,則的最大值為()A. B. C. D.2.《九章算術》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設,假設金箠由粗到細各尺重量依次成等差數列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤3.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.4.已知為虛數單位,實數滿足,則()A.1 B. C. D.5.已知拋物線的焦點為,對稱軸與準線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°6.已知函數,若關于的方程恰好有3個不相等的實數根,則實數的取值范圍為()A. B. C. D.7.已知實數滿足,則的最小值為()A. B. C. D.8.設為虛數單位,復數,則實數的值是()A.1 B.-1 C.0 D.29.已知定義在上的奇函數滿足:(其中),且在區間上是減函數,令,,,則,,的大小關系(用不等號連接)為()A. B.C. D.10.一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是()A. B. C. D.11.若,滿足約束條件,則的最大值是()A. B. C.13 D.12.設,點,,,,設對一切都有不等式成立,則正整數的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,且,則__________.14.正方體的棱長為2,是它的內切球的一條弦(我們把球面上任意兩點之間的線段稱為球的弦),為正方體表面上的動點,當弦的長度最大時,的取值范圍是______.15.函數在的零點個數為_________.16.已知△ABC得三邊長成公比為2的等比數列,則其最大角的余弦值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)當時,求的單調區間;(2)若函數有兩個極值點,,且,為的導函數,設,求的取值范圍,并求取到最小值時所對應的的值.18.(12分)在直角坐標系中,是過定點且傾斜角為的直線;在極坐標系(以坐標原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標方程為.(1)寫出直線的參數方程,并將曲線的方程化為直角坐標方程;(2)若曲線與直線相交于不同的兩點,求的取值范圍.19.(12分)已知數列滿足.(1)求數列的通項公式;(2)設數列的前項和為,證明:.20.(12分)已知多面體中,、均垂直于平面,,,,是的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.21.(12分)已知函數.(1)當(為自然對數的底數)時,求函數的極值;(2)為的導函數,當,時,求證:.22.(10分)在直角坐標系中,直線的參數方程為為參數),直線的參數方程(為參數),若直線的交點為,當變化時,點的軌跡是曲線(1)求曲線的普通方程;(2)以坐標原點為極點,軸非負半軸為極軸且取相同的單位長度建立極坐標系,設射線的極坐標方程為,,點為射線與曲線的交點,求點的極徑.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

作出不等式組表示的平面區域,作出目標函數對應的直線,結合圖象知當直線過點時,取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點的三角形及其內部,如下圖表示:當目標函數經過點時,取得最大值,最大值為.故選:C.【點睛】本題主要考查線性規劃等基礎知識;考查運算求解能力,數形結合思想,應用意識,屬于中檔題.2、B【解析】

依題意,金箠由粗到細各尺重量構成一個等差數列,則,由此利用等差數列性質求出結果.【詳解】設金箠由粗到細各尺重量依次所成得等差數列為,設首項,則,公差,.故選B【點睛】本題考查了等差數列的通項公式,考查了推理能力與計算能力,屬于基礎題.3、B【解析】

設,則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結果.【詳解】設,則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應用,屬于基礎題.4、D【解析】,則故選D.5、C【解析】

如圖所示:作垂直于準線交準線于,則,故,得到答案.【詳解】如圖所示:作垂直于準線交準線于,則,在中,,故,即.故選:.【點睛】本題考查了拋物線中角度的計算,意在考查學生的計算能力和轉化能力.6、D【解析】

討論,,三種情況,求導得到單調區間,畫出函數圖像,根據圖像得到答案.【詳解】當時,,故,函數在上單調遞增,在上單調遞減,且;當時,;當時,,,函數單調遞減;如圖所示畫出函數圖像,則,故.故選:.【點睛】本題考查了利用導數求函數的零點問題,意在考查學生的計算能力和應用能力.7、A【解析】

所求的分母特征,利用變形構造,再等價變形,利用基本不等式求最值.【詳解】解:因為滿足,則,當且僅當時取等號,故選:.【點睛】本題考查通過拼湊法利用基本不等式求最值.拼湊法的實質在于代數式的靈活變形,拼系數、湊常數是關鍵.(1)拼湊的技巧,以整式為基礎,注意利用系數的變化以及等式中常數的調整,做到等價變形;(2)代數式的變形以拼湊出和或積的定值為目標(3)拆項、添項應注意檢驗利用基本不等式的前提.8、A【解析】

根據復數的乘法運算化簡,由復數的意義即可求得的值.【詳解】復數,由復數乘法運算化簡可得,所以由復數定義可知,解得,故選:A.【點睛】本題考查了復數的乘法運算,復數的意義,屬于基礎題.9、A【解析】因為,所以,即周期為4,因為為奇函數,所以可作一個周期[-2e,2e]示意圖,如圖在(0,1)單調遞增,因為,因此,選A.點睛:函數對稱性代數表示(1)函數為奇函數,函數為偶函數(定義域關于原點對稱);(2)函數關于點對稱,函數關于直線對稱,(3)函數周期為T,則10、D【解析】

設圓錐的母線長為l,底面半徑為R,再表達圓錐表面積與球的表面積公式,進而求得即可得圓錐軸截面底角的大小.【詳解】設圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎題.11、C【解析】

由已知畫出可行域,利用目標函數的幾何意義求最大值.【詳解】解:表示可行域內的點到坐標原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標原點的距離最大,即.故選:.【點睛】本題考查線性規劃問題,考查數形結合的數學思想以及運算求解能力,屬于基礎題.12、A【解析】

先求得,再求得左邊的范圍,只需,利用單調性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數的最小值為3.【點睛】本題考查了數列的通項及求和問題,考查了數列的單調性及不等式的解法,考查了轉化思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:因,故,所以,,應填.考點:三角變換及運用.14、【解析】

由弦的長度最大可知為球的直徑.由向量的線性運用表示出,即可由范圍求得的取值范圍.【詳解】連接,如下圖所示:設球心為,則當弦的長度最大時,為球的直徑,由向量線性運算可知正方體的棱長為2,則球的半徑為1,,所以,而所以,即故答案為:.【點睛】本題考查了空間向量線性運算與數量積的運算,正方體內切球性質應用,屬于中檔題.15、1【解析】

本問題轉化為曲線交點個數問題,在同一直角坐標系內,畫出函數的圖象,利用數形結合思想進行求解即可.【詳解】問題函數在的零點個數,可以轉化為曲線交點個數問題.在同一直角坐標系內,畫出函數的圖象,如下圖所示:由圖象可知:當時,兩個函數只有一個交點.故答案為:1【點睛】本題考查了求函數的零點個數問題,考查了轉化思想和數形結合思想.16、-【解析】試題分析:根據題意設三角形的三邊長分別設為為a,2a,2a,∵2a>2a>a,∴2a所對的角為最大角,設為θ,則根據余弦定理得考點:余弦定理及等比數列的定義.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)單調遞增區間為,單調遞減區間為(2)的取值范圍是;對應的的值為.【解析】

(1)當時,求的導數可得函數的單調區間;(2)若函數有兩個極值點,,且,利用導函數,可得的范圍,再表達,構造新函數可求的取值范圍,從而可求取到最小值時所對應的的值.【詳解】(1)函數由條件得函數的定義域:,當時,,所以:,時,,當時,,當,時,,則函數的單調增區間為:,單調遞減區間為:,;(2)由條件得:,,由條件得有兩根:,,滿足,△,可得:或;由,可得:.,函數的對稱軸為,,所以:,;,可得:,,,則:,所以:;所以:,令,,,則,因為:時,,所以:在,上是單調遞減,在,上單調遞增,因為:,(1),,(1),所以,;即的取值范圍是:,;,所以有,則,;所以當取到最小值時所對應的的值為;【點睛】本題主要考查利用導數研究函數的極值和單調區間問題,考查利用導數求函數的最值,體現了轉化的思想方法,屬于難題.18、(1)(為參數),;(2)【解析】分析:(1)直線的參數方程為(為參數),其中表示之間的距離,而極坐標方程可化為,從而的直角方程為.(2)設,則,利用在圓上得到滿足的方程,最后利用韋達定理就可求出兩條線段的和.詳解:(1)直線的參數方程為(為參數).曲線的極坐標方程可化為.把,代入曲線的極坐標方程可得,即.(2)把直線的參數方程為(為參數)代入圓的方程可得:.∵曲線與直線相交于不同的兩點,∴,∴,又,∴.又,.∴,∵,∴,∴.∴的取值范圍是.點睛:(1)直線的參數方程有多種形式,其中一種為(為直線的傾斜角,是參數),這樣的參數方程中的參數有明確的幾何意義,它表示之間的距離.(2)直角坐標方程轉為極坐標方程的關鍵是利用公式,而極坐標方程轉化為直角坐標方程的關鍵是利用公式,后者也可以把極坐標方程變形盡量產生以便轉化.19、(1);(2)見解析.【解析】

(1)令,,利用可求得數列的通項公式,由此可得出數列的通項公式;(2)求得,利用裂項相消法求得,進而可得出結論.【詳解】(1)令,,當時,;當時,,則,故;(2),.【點睛】本題考查利用求通項,同時也考查了裂項相消法求和,考查計算能力與推理能力,屬于基礎題.20、(1)見解析;(2).【解析】

(1)取的中點,連接、,推導出四邊形為平行四邊形,可得出,由此能證明平面;(2)由,得平面,則點到平面的距離等于點到平面的距離,在平面內過點作于點,就是到平面的距離,也就是點到平面的距離,由此能求出直線與平面所成角的正弦值.【詳解】(1)取的中點,連接、,、分別為、的中點,則且,、均垂直于平面,且,則,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面;(2)由,平面,平面,平面,點到平面的距離等于點到平面的距離,在平面內過點作于點,平面,平面,,,,平面,即就是到平面的距離,也就是點到平面的距離,設,則到平面的距離,,因此,直線與平面所成角的正弦值為.【點睛】本題考查線面平行的證明,考查線面角的正弦值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,考查數形結合思想,是中檔題.21、(1)極大值,極小值;(2)詳見解析.【解析】

首先確定函數的定義域和;(1)當時,根據的正負可確定單調性,進而確定極值點,代入可求得極值;(2)通過分析法可將問題轉化為證明,設,令,利用導數可證得,進而得到結論.【詳解】由題意得:定義域為,,(1)當時,,當和時,;當時,,在,上單調遞增,在上單調遞減,極大值為,極小值為.(2)要證:,即證:,即證:,化簡可得:.,,即證:,設,令,則,在上單調遞增,,則由,從而有:.【點睛】本題考查導數在研究函數中的應用,涉及到函數極值的求解、利用導數證明不等式的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論