




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆廣東省揭陽市惠來一中高三第二次月考試題數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的焦距為,過左焦點作斜率為1的直線交雙曲線的右支于點,若線段的中點在圓上,則該雙曲線的離心率為()A. B. C. D.2.設(shè)復(fù)數(shù)滿足,則()A.1 B.-1 C. D.3.設(shè)為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.5.對兩個變量進行回歸分析,給出如下一組樣本數(shù)據(jù):,,,,下列函數(shù)模型中擬合較好的是()A. B. C. D.6.下圖中的圖案是我國古代建筑中的一種裝飾圖案,形若銅錢,寓意富貴吉祥.在圓內(nèi)隨機取一點,則該點取自陰影區(qū)域內(nèi)(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.7.已知等差數(shù)列的前項和為,,,則()A.25 B.32 C.35 D.408.計算等于()A. B. C. D.9.已知,且,則的值為()A. B. C. D.10.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.11.設(shè),,則()A. B. C. D.12.已知三棱錐中,為的中點,平面,,,則有下列四個結(jié)論:①若為的外心,則;②若為等邊三角形,則;③當(dāng)時,與平面所成的角的范圍為;④當(dāng)時,為平面內(nèi)一動點,若OM∥平面,則在內(nèi)軌跡的長度為1.其中正確的個數(shù)是().A.1 B.1 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知均為非負實數(shù),且,則的取值范圍為______.14.春天即將來臨,某學(xué)校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨立.該學(xué)校的某班隨機領(lǐng)養(yǎng)了此種盆栽植物10株,設(shè)為其中成活的株數(shù),若的方差,,則________.15.某部隊在訓(xùn)練之余,由同一場地訓(xùn)練的甲?乙?丙三隊各出三人,組成小方陣開展游戲,則來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率為______.16.如圖是某幾何體的三視圖,俯視圖中圓的兩條半徑長為2且互相垂直,則該幾何體的體積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)萬眾矚目的第14屆全國冬季運動運會(簡稱“十四冬”)于2020年2月16日在呼倫貝爾市盛大開幕,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會對全校100名教職工在“十四冬”期間每天收看比賽轉(zhuǎn)播的時間作了一次調(diào)查,得到如圖頻數(shù)分布直方圖:(1)若將每天收看比賽轉(zhuǎn)播時間不低于3小時的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請根據(jù)頻率分布直方圖補全列聯(lián)表;并判斷能否有的把握認為該校教職工是否為“冰雪迷”與“性別”有關(guān);(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,再從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,18.(12分)如圖,已知在三棱臺中,,,.(1)求證:;(2)過的平面分別交,于點,,且分割三棱臺所得兩部分幾何體的體積比為,幾何體為棱柱,求的長.提示:臺體的體積公式(,分別為棱臺的上、下底面面積,為棱臺的高).19.(12分)已知.(1)求不等式的解集;(2)記的最小值為,且正實數(shù)滿足.證明:.20.(12分)某貧困地區(qū)幾個丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應(yīng)開鑿的直線穿山隧道,為進一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標(biāo)系,如圖所示,山區(qū)邊界曲線為,設(shè)公路與曲線相切于點,的橫坐標(biāo)為.(1)當(dāng)為何值時,公路的長度最短?求出最短長度;(2)當(dāng)公路的長度最短時,設(shè)公路交軸,軸分別為,兩點,并測得四邊形中,,,千米,千米,求應(yīng)開鑿的隧道的長度.21.(12分)已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).(1)求曲線的直角坐標(biāo)方程與直線的普通方程;(2)已知點,直線與曲線交于、兩點,求.22.(10分)已知拋物線C:x24py(p為大于2的質(zhì)數(shù))的焦點為F,過點F且斜率為k(k0)的直線交C于A,B兩點,線段AB的垂直平分線交y軸于點E,拋物線C在點A,B處的切線相交于點G.記四邊形AEBG的面積為S.(1)求點G的軌跡方程;(2)當(dāng)點G的橫坐標(biāo)為整數(shù)時,S是否為整數(shù)?若是,請求出所有滿足條件的S的值;若不是,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
設(shè)線段的中點為,判斷出點的位置,結(jié)合雙曲線的定義,求得雙曲線的離心率.【詳解】設(shè)線段的中點為,由于直線的斜率是,而圓,所以.由于是線段的中點,所以,而,根據(jù)雙曲線的定義可知,即,即.故選:C【點睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.2、B【解析】
利用復(fù)數(shù)的四則運算即可求解.【詳解】由.故選:B【點睛】本題考查了復(fù)數(shù)的四則運算,需掌握復(fù)數(shù)的運算法則,屬于基礎(chǔ)題.3、A【解析】
利用復(fù)數(shù)的除法運算化簡,求得對應(yīng)的坐標(biāo),由此判斷對應(yīng)點所在象限.【詳解】,對應(yīng)的點的坐標(biāo)為,位于第一象限.故選:A.【點睛】本小題主要考查復(fù)數(shù)除法運算,考查復(fù)數(shù)對應(yīng)點所在象限,屬于基礎(chǔ)題.4、D【解析】
由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質(zhì),直線與圓相切的性質(zhì),離心率的求法,屬于中檔題.5、D【解析】
作出四個函數(shù)的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數(shù)圖象,同時描出題中的四個點,它們在曲線的兩側(cè),與其他三個曲線都離得很遠,因此D是正確選項,故選:D.【點睛】本題考查回歸分析,擬合曲線包含或靠近樣本數(shù)據(jù)的點越多,說明擬合效果好.6、C【解析】令圓的半徑為1,則,故選C.7、C【解析】
設(shè)出等差數(shù)列的首項和公差,即可根據(jù)題意列出兩個方程,求出通項公式,從而求得.【詳解】設(shè)等差數(shù)列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數(shù)列的通項公式的求法和應(yīng)用,涉及等差數(shù)列的前項和公式的應(yīng)用,屬于容易題.8、A【解析】
利用誘導(dǎo)公式、特殊角的三角函數(shù)值,結(jié)合對數(shù)運算,求得所求表達式的值.【詳解】原式.故選:A【點睛】本小題主要考查誘導(dǎo)公式,考查對數(shù)運算,屬于基礎(chǔ)題.9、A【解析】
由及得到、,進一步得到,再利用兩角差的正切公式計算即可.【詳解】因為,所以,又,所以,,所以.故選:A.【點睛】本題考查三角函數(shù)誘導(dǎo)公式、二倍角公式以及兩角差的正切公式的應(yīng)用,考查學(xué)生的基本計算能力,是一道基礎(chǔ)題.10、B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結(jié)果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關(guān)鍵在于能夠準(zhǔn)確還原幾何體,從而分別求解各部分的體積.11、D【解析】
集合是一次不等式的解集,分別求出再求交集即可【詳解】,,則故選【點睛】本題主要考查了一次不等式的解集以及集合的交集運算,屬于基礎(chǔ)題.12、C【解析】
由線面垂直的性質(zhì),結(jié)合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質(zhì)可判斷②錯誤;由線面角的定義和轉(zhuǎn)化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質(zhì)定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯誤;若,設(shè)與平面所成角為可得,設(shè)到平面的距離為由可得即有,當(dāng)且僅當(dāng)取等號.可得的最大值為,即的范圍為,③正確;取中點,的中點,連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【點睛】此題考查立體幾何中與點、線、面位置關(guān)系有關(guān)的命題的真假判斷,處理這類問題,可以用已知的定理或性質(zhì)來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè),可得的取值范圍,分別利用基本不等式和,把用代換,結(jié)合的取值范圍求關(guān)于的二次函數(shù)的最值即可求解.【詳解】因為,,令,則,因為,當(dāng)且僅當(dāng)時等號成立,所以,,即,令則函數(shù)的對稱軸為,所以當(dāng)時函數(shù)有最大值為,即.當(dāng)且,即,或,時取等號;因為,當(dāng)且僅當(dāng)時等號成立,所以,令,則函數(shù)的對稱軸為,所以當(dāng)時,函數(shù)有最小值為,即,當(dāng),且時取等號,所以.故答案為:【點睛】本題考查基本不等式與二次函數(shù)求最值相結(jié)合求代數(shù)式的取值范圍;考查運算求解能力和知識的綜合運用能力;基本不等式:和的靈活運用是求解本題的關(guān)鍵;屬于綜合型、難度大型試題.14、【解析】
由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點睛】本題考查二項分布的實際應(yīng)用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.15、【解析】
分兩步進行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計算出概率即可.【詳解】首先,第一行隊伍的排法有種;第二行隊伍的排法有2種;第三行隊伍的排法有1種;然后,第一行的每個位置的人員安排有種;第二行的每個位置的人員安排有種;第三行的每個位置的人員安排有種.所以來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率.故答案為:.【點睛】本題考查了分步計數(shù)原理,排列與組合知識,考查了轉(zhuǎn)化能力,屬于中檔題.16、20【解析】
由三視圖知該幾何體是一個圓柱與一個半球的四分之三的組合,利用球體體積公式、圓柱體積公式計算即可.【詳解】由三視圖知,該幾何體是由一個半徑為2的半球的四分之三和一個底面半徑2、高為4的圓柱組合而成,其體積為.故答案為:20.【點睛】本題考查三視圖以及幾何體體積,考查學(xué)生空間想象能力以及數(shù)學(xué)運算能力,是一道容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)列聯(lián)表見解析,有把握;(2)分布列見解析,.【解析】
(1)根據(jù)頻率分布直方圖補全列聯(lián)表,求出,從而有的把握認為該校教職工是否為“冰雪迷”與“性別”有關(guān).(2)在全校“冰雪迷”中按性別分層抽樣抽取6名,則抽中男教工:人,抽中女教工:人,從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數(shù)為,則的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出的分布列和數(shù)學(xué)期望.【詳解】解:(1)由題意得下表:男女合計冰雪迷402060非冰雪迷202040合計6040100的觀測值為所以有的把握認為該校教職工是“冰雪迷”與“性別”有關(guān).(2)由題意知抽取的6名“冰雪迷”中有4名男職工,2名女職工,所以的可能取值為0,1,2.且,,,所以的分布列為012【點睛】本題考查獨立性檢驗的應(yīng)用,考查離散型隨機變量的分布列、數(shù)學(xué)期望的求法,考查古典概型、排列組合、頻率分布直方圖的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,屬于中檔題.18、(1)證明見解析;(2)2【解析】
(1)在中,利用勾股定理,證得,又由題設(shè)條件,得到,利用線面垂直的判定定理,證得平面,進而得到;(2)設(shè)三棱臺和三棱柱的高都為上、下底面之間的距離為,根據(jù)棱臺的體積公式,列出方程求得,得到,即可求解.【詳解】(1)由題意,在中,,,所以,可得,因為,可得.又由,,平面,所以平面,因為平面,所以.(2)因為,可得,令,,設(shè)三棱臺和三棱柱的高都為上、下底面之間的距離為,則,整理得,即,解得,即,又由,所以.【點睛】本題主要考查了直線與平面垂直的判定與應(yīng)用,以及幾何體的體積公式的應(yīng)用,其中解答中熟記線面位置關(guān)系的判定定理與性質(zhì)定理,以及熟練應(yīng)用幾何體的體積公式進行求解是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.19、(1)或;(2)見解析【解析】
(1)根據(jù),利用零點分段法解不等式,或作出函數(shù)的圖像,利用函數(shù)的圖像解不等式;(2)由(1)作出的函數(shù)圖像求出的最小值為,可知,代入中,然后給等式兩邊同乘以,再將寫成后,化簡變形,再用均值不等式可證明.【詳解】(1)解法一:1°時,,即,解得;2°時,,即,解得;3°時,,即,解得.綜上可得,不等式的解集為或.解法二:由作出圖象如下:由圖象可得不等式的解集為或.(2)由所以在上單調(diào)遞減,在上單調(diào)遞增,所以,正實數(shù)滿足,則,即,(當(dāng)且僅當(dāng)即時取等號)故,得證.【點睛】此題考查了絕對值不等式的解法,絕對值不等式的性質(zhì)和均值不等式的運用,考查了分類討論思想和轉(zhuǎn)化思想,屬于中檔題.20、(1)當(dāng)時,公路的長度最短為千米;(2)(千米).【解析】
(1)設(shè)切點的坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義求出切線的方程為,根據(jù)兩點間距離得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,從而得出極值和最值,即可得出結(jié)果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據(jù)勾股定理即可求出的長度.【詳解】(1)由題可知,設(shè)點的坐標(biāo)為,又,則直線的方程為,由此得直線與坐標(biāo)軸交點為:,則,故,設(shè),則.令,解得=10.當(dāng)時,是減函數(shù);當(dāng)時,是增函數(shù).所以當(dāng)時,函數(shù)有極小值,也是最小值,所以,此時.故當(dāng)時,公路的長度最短,最短長度為千米.(2)在中,,,所以,所以,根據(jù)正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).【點睛】本題考查利用導(dǎo)數(shù)解決實際的最值問題,涉及構(gòu)造函數(shù)法以及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和極值,還考查正余弦定理的實際應(yīng)用,還考查解題分析能力和計算能力.21、(1).(2)【解析】
(1)根據(jù)極坐標(biāo)與直角坐標(biāo)互化公式,以及消去參數(shù),即可求解;(2)設(shè)兩點對應(yīng)的參數(shù)分別為,,將直線的參數(shù)方程代入曲線方程,結(jié)合根與系數(shù)的關(guān)系,即可求解.【詳解】(1)對于曲線的極坐標(biāo)方程為,可得,又由,可得,即,所以曲線的普通方程為.由直線的參數(shù)方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)患溝通與倫理教育的重要性
- 區(qū)塊鏈技術(shù)在智能交通系統(tǒng)中的應(yīng)用探討
- 使用吊車合同范例
- 醫(yī)療人工智能與智慧健康城市的構(gòu)建
- 初三第一學(xué)期班主任期末工作總結(jié)模版
- 企業(yè)健康管理中的醫(yī)療信息共享與隱私保護探討
- 防火規(guī)范中關(guān)于疏散口距離的總結(jié)
- led電源合同范例
- 醫(yī)療商業(yè)地產(chǎn)的規(guī)劃設(shè)計要點
- 有初中物理長度與時間的測量必練題總結(jié)模版
- 2025年4月新高考語文全國Ⅰ卷各地??荚囶}匯編之語用
- 山東省聊城市2025年高考模擬試題(二)數(shù)學(xué)+答案
- 小學(xué)數(shù)學(xué)西師大版(2024)三年級下冊旋轉(zhuǎn)與平移現(xiàn)象教學(xué)設(shè)計
- 田園綜合體可行性研究報告
- 沈陽市東北大學(xué)非教師崗位招聘考試真題2024
- 2025年中考語文二輪復(fù)習(xí):散文閱讀 專題練習(xí)題(含答案)
- 高校宿管培訓(xùn)
- 2025屆新高考教學(xué)教研聯(lián)盟高三第二次聯(lián)考政治試題及答案
- 賭博酒駕警示教育
- 產(chǎn)業(yè)園物業(yè)管理實施方案
- 管理學(xué)基礎(chǔ)-形考任務(wù)三-國開-參考資料
評論
0/150
提交評論