




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆東北三省三校(哈爾濱師大附中高三預測金卷(數學試題理)注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正項等比數列滿足,若存在兩項,,使得,則的最小值為().A.16 B. C.5 D.42.馬林●梅森是17世紀法國著名的數學家和修道士,也是當時歐洲科學界一位獨特的中心人物,梅森在歐幾里得、費馬等人研究的基礎上對2p﹣1作了大量的計算、驗證工作,人們為了紀念梅森在數論方面的這一貢獻,將形如2P﹣1(其中p是素數)的素數,稱為梅森素數.若執行如圖所示的程序框圖,則輸出的梅森素數的個數是()A.3 B.4 C.5 D.63.過圓外一點引圓的兩條切線,則經過兩切點的直線方程是().A. B. C. D.4.已知,,,則的大小關系為()A. B. C. D.5.記為數列的前項和數列對任意的滿足.若,則當取最小值時,等于()A.6 B.7 C.8 D.96.定義在R上的偶函數f(x)滿足f(x+2)=f(x),當x∈[﹣3,﹣2]時,f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)7.某幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為().A. B. C.1 D.8.不等式組表示的平面區域為,則()A., B.,C., D.,9.設過點的直線分別與軸的正半軸和軸的正半軸交于兩點,點與點關于軸對稱,為坐標原點,若,且,則點的軌跡方程是()A. B.C. D.10.若,滿足約束條件,則的最大值是()A. B. C.13 D.11.已知集合,集合,則()A. B. C. D.12.《九章算術》是我國古代數學名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內切圓的直徑為多少步?”現從該三角形內隨機取一點,則此點取自內切圓的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,其準線與坐標軸交于點,過的直線與拋物線交于兩點,若,則直線的斜率________.14.已知函數,且,,使得,則實數m的取值范圍是______.15.如圖所示,點,B均在拋物線上,等腰直角的斜邊為BC,點C在x軸的正半軸上,則點B的坐標是________.16.古代“五行”學認為:“物質分金、木、土、水、火五種屬性,金克木,木克土,土克水,水克火,火克金.”將五種不同屬性的物質任意排成一列,但排列中屬性相克的兩種物質不相鄰,則這樣的排列方法有_________種.(用數字作答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,,是的中點,點在上,平面,平面平面,為銳角三角形,求證:(1)是的中點;(2)平面平面.18.(12分)已知點,且,滿足條件的點的軌跡為曲線.(1)求曲線的方程;(2)是否存在過點的直線,直線與曲線相交于兩點,直線與軸分別交于兩點,使得?若存在,求出直線的方程;若不存在,請說明理由.19.(12分)已知為橢圓的左、右焦點,離心率為,點在橢圓上.(1)求橢圓的方程;(2)過的直線分別交橢圓于和,且,問是否存在常數,使得成等差數列?若存在,求出的值;若不存在,請說明理由.20.(12分)已知拋物線的焦點為,直線交于兩點(異于坐標原點O).(1)若直線過點,,求的方程;(2)當時,判斷直線是否過定點,若過定點,求出定點坐標;若不過定點,說明理由.21.(12分)已知多面體中,、均垂直于平面,,,,是的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.22.(10分)為了拓展城市的旅游業,實現不同市區間的物資交流,政府決定在市與市之間建一條直達公路,中間設有至少8個的偶數個十字路口,記為,現規劃在每個路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數據如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認為喜歡樹木的種類與居民所在的城市具有相關性;(2)若從所有的路口中隨機抽取4個路口,恰有個路口種植楊樹,求的分布列以及數學期望;(3)在所有的路口種植完成后,選取3個種植同一種樹的路口,記總的選取方法數為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【詳解】設等比數列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當且僅當時,等號成立.故選:D.【點睛】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數列的知識,是一道中檔題.2、C【解析】
模擬程序的運行即可求出答案.【詳解】解:模擬程序的運行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執行循環體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執行循環體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執行循環體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執行循環體,p=9,S=511,輸出S的值為511,此時,不滿足條件p≤7,退出循環,結束,故若執行如圖所示的程序框圖,則輸出的梅森素數的個數是5,故選:C.【點睛】本題主要考查程序框圖,屬于基礎題.3、A【解析】過圓外一點,引圓的兩條切線,則經過兩切點的直線方程為,故選.4、A【解析】
根據指數函數與對數函數的單調性,借助特殊值即可比較大小.【詳解】因為,所以.因為,所以,因為,為增函數,所以所以,故選:A.【點睛】本題主要考查了指數函數、對數函數的單調性,利用單調性比較大小,屬于中檔題.5、A【解析】
先令,找出的關系,再令,得到的關系,從而可求出,然后令,可得,得出數列為等差數列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對任意的,所以是等差數列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當時,取最小值.故選:A【點睛】此題考查的是由數列的遞推式求數列的通項,采用了賦值法,屬于中檔題.6、B【解析】
根據函數的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數f(x)在定義域上的圖象,由此結合選項判斷即可.【詳解】由f(x+2)=f(x),得f(x)是周期函數且周期為2,先作出f(x)在x∈[﹣3,﹣2]時的圖象,然后根據周期為2依次平移,并結合f(x)是偶函數作出f(x)在R上的圖象如下,選項A,,所以,選項A錯誤;選項B,因為,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項B正確;選項C,,所以,即,選項C錯誤;選項D,,選項D錯誤.故選:B.【點睛】本題考查函數性質的綜合運用,考查函數值的大小比較,考查數形結合思想,屬于中檔題.7、B【解析】
首先由三視圖還原幾何體,進一步求出幾何體的棱長.【詳解】解:根據三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為.故選:B.【點睛】本題主要考查由三視圖還原幾何體,考查運算能力和推理能力,屬于基礎題.8、D【解析】
根據題意,分析不等式組的幾何意義,可得其表示的平面區域,設,分析的幾何意義,可得的最小值,據此分析選項即可得答案.【詳解】解:根據題意,不等式組其表示的平面區域如圖所示,其中,,
設,則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當過點時,直線在軸上的截距最大,即,當過點原點時,直線在軸上的截距最小,即,故AB錯誤;
設,則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質以及應用,關鍵是對目標函數幾何意義的認識,屬于基礎題.9、A【解析】
設坐標,根據向量坐標運算表示出,從而可利用表示出;由坐標運算表示出,代入整理可得所求的軌跡方程.【詳解】設,,其中,,即關于軸對稱故選:【點睛】本題考查動點軌跡方程的求解,涉及到平面向量的坐標運算、數量積運算;關鍵是利用動點坐標表示出變量,根據平面向量數量積的坐標運算可整理得軌跡方程.10、C【解析】
由已知畫出可行域,利用目標函數的幾何意義求最大值.【詳解】解:表示可行域內的點到坐標原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標原點的距離最大,即.故選:.【點睛】本題考查線性規劃問題,考查數形結合的數學思想以及運算求解能力,屬于基礎題.11、C【解析】
求出集合的等價條件,利用交集的定義進行求解即可.【詳解】解:∵,,∴,故選:C.【點睛】本題主要考查了對數的定義域與指數不等式的求解以及集合的基本運算,屬于基礎題.12、C【解析】
利用直角三角形三邊與內切圓半徑的關系求出半徑,再分別求出三角形和內切圓的面積,根據幾何概型的概率計算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內切圓的半徑為,所以向次三角形內投擲豆子,則落在其內切圓內的概率為.故選:C.【點睛】本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應用直角三角形的性質,求得其內切圓的半徑是解答的關鍵,著重考查了推理與運算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出拋物線焦點坐標,由,結合向量的坐標運算得,直線方程為,代入拋物線方程后應用韋達定理得,,從而可求得,得斜率.【詳解】由得,即聯立得解得或,∴.故答案為:.【點睛】本題考查直線與拋物線相交,考查向量的線性運算的坐標表示.直線方程與拋物線方程聯立后消元,應用韋達定理是解決直線與拋物線相交問題的常用方法.14、【解析】
根據條件轉化為函數在上的值域是函數在上的值域的子集;分別求值域即可得到結論.【詳解】解:依題意,,即函數在上的值域是函數在上的值域的子集.因為在上的值域為()或(),在上的值域為,故或,解得故答案為:.【點睛】本題考查了分段函數的值域求參數的取值范圍,屬于中檔題.15、【解析】
設出兩點的坐標,結合拋物線方程、兩條直線垂直的條件以及兩點間的距離公式列方程,解方程求得的坐標.【詳解】設,由于在拋物線上,所以.由于三角形是等腰直角三角形,,所以.由得,化為,可得,所以,解得,則.所以.故答案為:【點睛】本題考查拋物線的方程和運用,考查方程思想和運算能力,屬于中檔題.16、1.【解析】試題分析:由題意,可看作五個位置排列五種事物,第一位置有五種排列方法,不妨假設排上的是金,則第二步只能從土與水兩者中選一種排放,故有兩種選擇不妨假設排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故總的排列方法種數有5×2×1×1×1=1.考點:排列、組合及簡單計數問題.點評:本題考查排列排列組合及簡單計數問題,解答本題關鍵是理解題設中的限制條件及“五行”學說的背景,利用分步原理正確計數,本題較抽象,計數時要考慮周詳.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析;【解析】
(1)推導出,由是的中點,能證明是有中點.(2)作于點,推導出平面,從而,由,能證明平面,由此能證明平面平面.【詳解】證明:(1)在三棱錐中,平面,平面平面,平面,,在中,是的中點,是有中點.(2)在三棱錐中,是銳角三角形,在中,可作于點,平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【點睛】本題考查線段中點的證明,考查面面垂直的證明,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,考查數形結合思想,屬于中檔題.18、(1)(2)存在,或.【解析】
(1)由得看成到兩定點的和為定值,滿足橢圓定義,用定義可解曲線的方程.(2)先討論斜率不存在情況是否符合題意,當直線的斜率存在時,設直線點斜式方程,由,可得,再直線與橢圓聯解,利用根的判別式得到關于的一元二次方程求解.【詳解】解:設,由,,可得,即為,由,可得的軌跡是以為焦點,且的橢圓,由,可得,可得曲線的方程為;假設存在過點的直線l符合題意.當直線的斜率不存在,設方程為,可得為短軸的兩個端點,不成立;當直線的斜率存在時,設方程為,由,可得,即,可得,化為,由可得,由在橢圓內,可得直線與橢圓相交,,則化為,即為,解得,所以存在直線符合題意,且方程為或.【點睛】本題考查求軌跡方程及直線與圓錐曲線位置關系問題.(1)定義法求軌跡方程的思路:應用定義法求軌跡方程的關鍵在于由已知條件推出關于動點的等量關系式,由等量關系結合曲線定義判斷是何種曲線,再設出標準方程,用待定系數法求解;(2)解決是否存在直線的問題時,可依據條件尋找適合條件的直線方程,聯立方程消元得出一元二次方程,利用判別式得出是否有解.19、(1);(2)存在,.【解析】
(1)由條件建立關于的方程組,可求得,得出橢圓的方程;(2)①當直線的斜率不存在時,可求得,求得,②當直線的斜率存在且不為0時,設聯立直線與橢圓的方程,求出線段,再由得出線段,根據等差中項可求得,得出結論.【詳解】(1)由條件得,所以橢圓的方程為:;(2),①當直線的斜率不存在時,,此時,②當直線的斜率存在且不為0時,設,聯立消元得,設,,直線的斜率為,同理可得,所以,綜合①②,存在常數,使得成等差數列.【點睛】本題考查利用橢圓的離心率求橢圓的標準方程,直線與橢圓的位置關系中的弦長公式的相關問題,當兩直線的斜率具有關系時,可能通過斜率的代換得出另一條線段的弦長,屬于中檔題.20、(1)(2)直線過定點【解析】
設.(1)由題意知,.設直線的方程為,由得,則,由根與系數的關系可得,所以.由,得,解得.所以拋物線的方程為.(2)設直線的方程為,由得,由根與系數的關系可得,所以,解得.所以直線的方程為,所以時,直線過定點.21、(1)見解析;(2).【解析】
(1)取的中點,連接、,推導出四邊形為平行四邊形,可得出,由此能證明平面;(2)由,得平面,則點到平面的距離等于點到平面的距離,在平面內過點作于點,就是到平面的距離,也就是點到平面的距離,由此能求出直線與平面所成角的正弦值.【詳解】(1)取的中點,連接、,、分別為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 婚前房子合同協議書
- 超市入駐合同協議書范本
- 弱電合同補充協議書范本
- 課件分享介紹
- 哈爾濱星光中學2025屆七年級英語第二學期期末檢測模擬試題含答案
- 消防課小學課件
- 2025屆湖北襄陽市第二十六中學七下英語期中聯考模擬試題含答案
- 合同延期安排協議書范本
- 江蘇省連云港外國語學校2025屆英語八下期末質量跟蹤監視試題含答案
- 河北省石家莊市四十一中學2025屆英語八下期中學業質量監測試題含答案
- DL-T5153-2014火力發電廠廠用電設計技術規程
- 女方凈身出戶離婚協議書的范文
- 全運會安全保衛方案(2篇)
- 產品生產保密協議代加工保密協議
- 醫學電子儀器原理與設計智慧樹知到期末考試答案2024年
- 污水管網巡查及養護 投標方案(技術方案)
- 數學中考考前指導
- 慢阻肺疾病知識指導總結與反思
- 2024年新改版青島版(六三制)四年級下冊科學全冊知識點
- 安全文明施工措施費計劃
- 初中八年級道德與法治-自由平等的追求(全國一等獎)
評論
0/150
提交評論