




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省濰坊市昌樂縣2025屆高考數學試題全真模擬演練請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設雙曲線(a>0,b>0)的一個焦點為F(c,0)(c>0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y2﹣2cx=0截得的弦長為2,則該雙曲線的標準方程為()A. B.C. D.2.已知(i為虛數單位,),則ab等于()A.2 B.-2 C. D.3.已知變量的幾組取值如下表:12347若與線性相關,且,則實數()A. B. C. D.4.設函數在定義城內可導,的圖象如圖所示,則導函數的圖象可能為()A. B.C. D.5.記等差數列的公差為,前項和為.若,,則()A. B. C. D.6.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.7.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}8.在中,內角所對的邊分別為,若依次成等差數列,則()A.依次成等差數列 B.依次成等差數列C.依次成等差數列 D.依次成等差數列9.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數,黑點為陰數,若從陰數和陽數中各取一數,則其差的絕對值為5的概率為A. B. C. D.10.復數(為虛數單位),則等于()A.3 B.C.2 D.11.如圖,平面ABCD,ABCD為正方形,且,E,F分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.12.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數的定義域為______.14.在三棱錐中,三條側棱兩兩垂直,,則三棱錐外接球的表面積的最小值為________.15.在編號為1,2,3,4,5且大小和形狀均相同的五張卡片中,一次隨機抽取其中的三張,則抽取的三張卡片編號之和是偶數的概率為________.16.拋物線的焦點坐標為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)這次新冠肺炎疫情,是新中國成立以來在我國發生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發公共衛生事件.中華民族歷史上經歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現出既有責任擔當之勇、又有科學防控之智.某校高三學生也展開了對這次疫情的研究,一名同學在數據統計中發現,從2020年2月1日至2月7日期間,日期和全國累計報告確診病例數量(單位:萬人)之間的關系如下表:日期1234567全國累計報告確診病例數量(萬人)1.41.72.02.42.83.13.5(1)根據表中的數據,運用相關系數進行分析說明,是否可以用線性回歸模型擬合與的關系?(2)求出關于的線性回歸方程(系數精確到0.01).并預測2月10日全國累計報告確診病例數.參考數據:,,,.參考公式:相關系數回歸方程中斜率和截距的最小二乘估計公式分別為:,.18.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點.(1)求證:;(2)求直線與平面所成角的正弦值.19.(12分)已知,且滿足,證明:.20.(12分)已知函數.(1)解不等式;(2)使得,求實數的取值范圍.21.(12分)如圖,在四棱錐中,側面為等邊三角形,且垂直于底面,,分別是的中點.(1)證明:平面平面;(2)已知點在棱上且,求直線與平面所成角的余弦值.22.(10分)已知函數(1)求單調區間和極值;(2)若存在實數,使得,求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
由題得,,又,聯立解方程組即可得,,進而得出雙曲線方程.【詳解】由題得①又該雙曲線的一條漸近線方程為,且被圓x2+y2﹣2cx=0截得的弦長為2,所以②又③由①②③可得:,,所以雙曲線的標準方程為.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,圓的方程的有關計算,考查了學生的計算能力.2.A【解析】
利用復數代數形式的乘除運算化簡,再由復數相等的條件列式求解.【詳解】,,得,..故選:.【點睛】本題考查復數代數形式的乘除運算,考查復數相等的條件,意在考查學生對這些知識的理解掌握水平,是基礎題.3.B【解析】
求出,把坐標代入方程可求得.【詳解】據題意,得,所以,所以.故選:B.【點睛】本題考查線性回歸直線方程,由性質線性回歸直線一定過中心點可計算參數值.4.D【解析】
根據的圖象可得的單調性,從而得到在相應范圍上的符號和極值點,據此可判斷的圖象.【詳解】由的圖象可知,在上為增函數,且在上存在正數,使得在上為增函數,在為減函數,故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數可得在上恒成立,故排除C.故選:D.【點睛】本題考查導函數圖象的識別,此類問題應根據原函數的單調性來考慮導函數的符號與零點情況,本題屬于基礎題.5.C【解析】
由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.【點睛】本題考查等差數列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.6.A【解析】
根據橢圓與雙曲線離心率的表示形式,結合和的離心率之積為,即可得的關系,進而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡可得,故選:A.【點睛】本題考查了橢圓與雙曲線簡單幾何性質應用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎題.7.A【解析】
解出集合A和B即可求得兩個集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【點睛】此題考查求集合的并集,關鍵在于準確求解不等式,根據描述法表示的集合,準確寫出集合中的元素.8.C【解析】
由等差數列的性質、同角三角函數的關系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結果.【詳解】依次成等差數列,,正弦定理得,由余弦定理得,,即依次成等差數列,故選C.【點睛】本題主要考查等差數列的定義、正弦定理、余弦定理,屬于難題.解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.9.A【解析】
陽數:,陰數:,然后分析陰數和陽數差的絕對值為5的情況數,最后計算相應概率.【詳解】因為陽數:,陰數:,所以從陰數和陽數中各取一數差的絕對值有:個,滿足差的絕對值為5的有:共個,則.故選:A.【點睛】本題考查實際背景下古典概型的計算,難度一般.古典概型的概率計算公式:.10.D【解析】
利用復數代數形式的乘除運算化簡,從而求得,然后直接利用復數模的公式求解.【詳解】,所以,,故選:D.【點睛】該題考查的是有關復數的問題,涉及到的知識點有復數的乘除運算,復數的共軛復數,復數的模,屬于基礎題目.11.C【解析】
分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設.則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學生對這些知識的理解掌握水平.12.B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據三視圖進行調整.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
對數函數的定義域需滿足真數大于0,再由指數型不等式求解出解集即可.【詳解】對函數有意義,即.故答案為:【點睛】本題考查求對數函數的定義域,還考查了指數型不等式求解,屬于基礎題.14.【解析】
設,可表示出,由三棱錐性質得這三條棱長的平方和等于外接球直徑的平方,從而半徑的最小值,得外接球表面積.【詳解】設則,由兩兩垂直知三棱錐的三條棱的棱長的平方和等于其外接球的直徑的平方.記外接球半徑為,∴當時,.故答案為:.【點睛】本題考查三棱錐外接球表面積,解題關鍵是掌握三棱錐的性質:三條側棱兩兩垂直的三棱錐的外接球的直徑的平方等于這三條側棱的平方和.15.【解析】
先求出所有的基本事件個數,再求出“抽取的三張卡片編號之和是偶數”這一事件包含的基本事件個數,利用古典概型的概率計算公式即可算出結果.【詳解】一次隨機抽取其中的三張,所有基本事件為:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10個,其中“抽取的三張卡片編號之和是偶數”包含6個基本事件,因此“抽取的三張卡片編號之和是偶數”的概率為:.故答案為:.【點睛】本題考查了古典概型及其概率計算公式,屬于基礎題.16.【解析】
變換得到,計算焦點得到答案.【詳解】拋物線的標準方程為,,所以焦點坐標為.故答案為:【點睛】本題考查了拋物線的焦點坐標,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)可以用線性回歸模型擬合與的關系;(2),預測2月10日全國累計報告確診病例數約有4.5萬人.【解析】
(1)根據已知數據,利用公式求得,再根據的值越大說明它們的線性相關性越高來判斷.(2)由(1)的相關數據,求得,,寫出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數據得,,,所以,,所以.因為與的相關近似為0.99,說明它們的線性相關性相當高,從而可以用線性回歸模型擬合與的關系.(2)由(1)得,,,所以,關于的回歸方程為:,2月10日,即代入回歸方程得:.所以預測2月10日全國累計報告確診病例數約有4.5萬人.【點睛】本題主要考查線性回歸分析和回歸方程的求解及應用,還考查了運算求解的能力,屬于中檔題.18.(1)證明見解析(2)【解析】
(1)由,故,所以四邊形為菱形,再通過,證得,所以四邊形為正方形,得到.(2)根據(1)的論證,建立空間直角坐標,設平面的法向量為,由求得,再由,利用線面角的向量法公式求解.【詳解】(1)因為,故,所以四邊形為菱形,而平面,故.因為,故,故,即四邊形為正方形,故.(2)依題意,.在正方形中,,故以為原點,所在直線分別為、、軸,建立如圖所示的空間直角坐標系;如圖所示:不紡設,則,又因為,所以.所以.設平面的法向量為,則,即,令,則.于是.又因為,設直線與平面所成角為,則,所以直線與平面所成角的正弦值為.【點睛】本題考查空間線面的位置關系、線面成角,還考查空間想象能力以及數形結合思想,屬于中檔題.19.證明見解析【解析】
將化簡可得,由柯西不等式可得證明.【詳解】解:因為,,所以,又,所以,當且僅當時取等號.【點睛】本題主要考查柯西不等式的應用,相對不難,注意已知條件的化簡及柯西不等式的靈活運用.20.(1);(2)或.【解析】
(1)分段討論得出函數的解析式,再分范圍解不等式,可得解集;(2)先求出函數的最小值,再建立關于的不等式,可求得實數的取值范圍.【詳解】(1)因為,所以當時,;當時,無解;當時,;綜上,不等式的解集為;(2),又,或.【點睛】本題考查分段函數,絕對值不等式的解法,以及關于函數的存在和任意的問題,屬于中檔題.21.(1)證明見解析;(2).【解析】
(1)由平面幾何知識可得出四邊形是平行四邊形,可得面,再由面面平行的判定可證得面面平行;(2)由(1)可知,兩兩垂直,故建立空間直角坐標系,可求得面PAB的法向量,再運用線面角的向量求法,可求得直線與平面所成角的余弦值.【詳解】(1),,又,,,而、分別是、的中點,,故面,又且,故四邊形是平行四邊形,面,又,是面內的兩條相交直線,故面面.(2)由(1)可知,兩兩垂直,故建系如圖所示,則,,,,設是平面PAB的法向量,,令,則,,直線NE與平面所成角的余弦值為.【點睛】本題考查空間的面面平行的判定,以及線面角的空間向量的求解方法,屬于中檔題.22.(1)時,函數單調遞增,,函數單調遞減,;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 還建房房合同協議書
- 酒店如何簽署協議書合同
- 全款買房子合同協議書
- 2025濟南購房合同模板
- 2025瑞泰養老金保險合同條款 合同范本
- 終止共貨合同協議書
- 怎樣寫無效合同協議書
- 建筑拆改安全合同協議書
- 外貿墊資合同協議書范本
- 網絡故障及其排查方法試題及答案
- 理論聯系實際闡述文化在社會發展中具有什么樣的作用?參考答案四
- 華為HRBP轉型方案
- 運維服務保密協議書
- 中原鄉鎮櫻桃溝鄉村振興景觀概念性規劃方案【鄉村文旅】【鄉村振興】【鄉村景觀規劃】
- 《老年肺炎臨床診斷與治療專家共識(2024年版)》臨床解讀
- 2023版設備管理體系標準
- 廣聯達BIM智慧工地
- DFMEA模板(完整版)
- 年產1000萬件日用陶瓷陶瓷廠工藝設計化學專業畢業設計
- 2005年廣西高考理科數學真題及答案
- 微波檢測技術及應用
評論
0/150
提交評論