




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆山東省高三第三次模擬數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.集合,,則()A. B. C. D.2.盒子中有編號為1,2,3,4,5,6,7的7個相同的球,從中任取3個編號不同的球,則取的3個球的編號的中位數恰好為5的概率是()A. B. C. D.3.函數的圖象如圖所示,則它的解析式可能是()A. B.C. D.4.已知,則的大小關系為A. B. C. D.5.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,它的終邊過點,則的值為()A. B. C. D.6.已知函數,.若存在,使得成立,則的最大值為()A. B.C. D.7.執行如圖所示的程序框圖,輸出的結果為()A. B. C. D.8.集合,則()A. B. C. D.9.一個封閉的棱長為2的正方體容器,當水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,則容器里水面的最大高度為()A. B. C. D.10.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學家、數學家和物理學家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀念他發現“圓柱內切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內切球體積為()A. B. C. D.11.已知等差數列中,若,則此數列中一定為0的是()A. B. C. D.12.雙曲線的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.下表是關于青年觀眾的性別與是否喜歡綜藝“奔跑吧,兄弟”的調查數據,人數如下表所示:不喜歡喜歡男性青年觀眾4010女性青年觀眾3080現要在所有參與調查的人中用分層抽樣的方法抽取個人做進一步的調研,若在“不喜歡的男性青年觀眾”的人中抽取了8人,則的值為______.14.已知,則________.(填“>”或“=”或“<”).15.設函數,當時,記最大值為,則的最小值為______.16.數列滿足,則,_____.若存在n∈N*使得成立,則實數λ的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)若時,解不等式;(2)若關于的不等式在上有解,求實數的取值范圍.18.(12分)百年大計,教育為本.某校積極響應教育部號召,不斷加大拔尖人才的培養力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進行專項培訓.據統計有如下表格.(其中表示通過自主招生獲得降分資格的學生人數,表示被清華、北大等名校錄取的學生人數)年份(屆)2014201520162017201841495557638296108106123(1)通過畫散點圖發現與之間具有線性相關關系,求關于的線性回歸方程;(保留兩位有效數字)(2)若已知該校2019年通過自主招生獲得降分資格的學生人數為61人,預測2019年高考該校考人名校的人數;(3)若從2014年和2018年考人名校的學生中采用分層抽樣的方式抽取出5個人回校宣傳,在選取的5個人中再選取2人進行演講,求進行演講的兩人是2018年畢業的人數的分布列和期望.參考公式:,參考數據:,,,19.(12分)已知數列為公差為d的等差數列,,,且,,依次成等比數列,.(1)求數列的前n項和;(2)若,求數列的前n項和為.20.(12分)已知函數(1)若函數在處取得極值1,證明:(2)若恒成立,求實數的取值范圍.21.(12分)等差數列的公差為2,分別等于等比數列的第2項,第3項,第4項.(1)求數列和的通項公式;(2)若數列滿足,求數列的前2020項的和.22.(10分)已知函數.(1)當時,求的單調區間.(2)設直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時切線的方程.(3)已知分別在,處取得極值,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
解一元二次不等式化簡集合A,再根據對數的真數大于零化簡集合B,求交集運算即可.【詳解】由可得,所以,由可得,所以,所以,故選A.【點睛】本題主要考查了集合的交集運算,涉及一元二次不等式解法及對數的概念,屬于中檔題.2.B【解析】
由題意,取的3個球的編號的中位數恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個球的編號的中位數恰好為5的情況有,所有的情況有種由古典概型,取的3個球的編號的中位數恰好為5的概率為:故選:B【點睛】本題考查了排列組合在古典概型中的應用,考查了學生綜合分析,概念理解,數學運算的能力,屬于中檔題.3.B【解析】
根據定義域排除,求出的值,可以排除,考慮排除.【詳解】根據函數圖象得定義域為,所以不合題意;選項,計算,不符合函數圖象;對于選項,與函數圖象不一致;選項符合函數圖象特征.故選:B【點睛】此題考查根據函數圖象選擇合適的解析式,主要利用函數性質分析,常見方法為排除法.4.D【解析】
分析:由題意結合對數的性質,對數函數的單調性和指數的性質整理計算即可確定a,b,c的大小關系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項.點睛:對于指數冪的大小的比較,我們通常都是運用指數函數的單調性,但很多時候,因冪的底數或指數不相同,不能直接利用函數的單調性進行比較.這就必須掌握一些特殊方法.在進行指數冪的大小比較時,若底數不同,則首先考慮將其轉化成同底數,然后再根據指數函數的單調性進行判斷.對于不同底而同指數的指數冪的大小的比較,利用圖象法求解,既快捷,又準確.5.B【解析】
根據三角函數定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過點,∴,.∴.故選:.【點睛】本題考查了三角函數定義,和差公式,意在考查學生的計算能力.6.C【解析】
由題意可知,,由可得出,,利用導數可得出函數在區間上單調遞增,函數在區間上單調遞增,進而可得出,由此可得出,可得出,構造函數,利用導數求出函數在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數的定義域為,對恒成立,所以,函數在區間上單調遞增,同理可知,函數在區間上單調遞增,,則,,則,構造函數,其中,則.當時,,此時函數單調遞增;當時,,此時函數單調遞減.所以,.故選:C.【點睛】本題考查代數式最值的計算,涉及指對同構思想的應用,考查化歸與轉化思想的應用,有一定的難度.7.D【解析】
由程序框圖確定程序功能后可得出結論.【詳解】執行該程序可得.故選:D.【點睛】本題考查程序框圖.解題可模擬程序運行,觀察變量值的變化,然后可得結論,也可以由程序框圖確定程序功能,然后求解.8.D【解析】
利用交集的定義直接計算即可.【詳解】,故,故選:D.【點睛】本題考查集合的交運算,注意常見集合的符號表示,本題屬于基礎題.9.B【解析】
根據已知可知水面的最大高度為正方體面對角線長的一半,由此得到結論.【詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.【點睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎題.10.D【解析】
設圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結合題中的結論即可求出該圓柱的內切球體積.【詳解】設圓柱的底面半徑為,則其母線長為,因為圓柱的表面積公式為,所以,解得,因為圓柱的體積公式為,所以,由題知,圓柱內切球的體積是圓柱體積的,所以所求圓柱內切球的體積為.故選:D【點睛】本題考查圓柱的軸截面及表面積和體積公式;考查運算求解能力;熟練掌握圓柱的表面積和體積公式是求解本題的關鍵;屬于中檔題.11.A【解析】
將已知條件轉化為的形式,由此確定數列為的項.【詳解】由于等差數列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數列的基本量計算,屬于基礎題.12.C【解析】
根據雙曲線的標準方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13.32【解析】
由已知可得抽取的比例,計算出所有被調查的人數,再乘以抽取的比例即為分層抽樣的樣本容量.【詳解】由題可知,抽取的比例為,被調查的總人數為人,則分層抽樣的樣本容量是人.故答案為:32【點睛】本題考查分層抽樣中求樣本容量,屬于基礎題.14.【解析】
注意到,故只需比較與1的大小即可.【詳解】由已知,,故有.又由,故有.故答案為:.【點睛】本題考查對數式比較大小,涉及到換底公式的應用,考查學生的數學運算能力,是一道中檔題.15.【解析】
易知,設,,利用絕對值不等式的性質即可得解.【詳解】,設,,令,當時,,所以單調遞減令,當時,,所以單調遞增所以當時,,,則則,即故答案為:.【點睛】本題考查函數最值的求法,考查絕對值不等式的性質,考查轉化思想及邏輯推理能力,屬于難題.16.【解析】
利用“退一作差法”求得數列的通項公式,將不等式分離常數,利用商比較法求得的最小值,由此求得的取值范圍,進而求得的最小值.【詳解】當時兩式相減得所以當時,滿足上式綜上所述存在使得成立的充要條件為存在使得,設,所以,即,所以單調遞增,的最小項,即有的最小值為.故答案為:(1).(2).【點睛】本小題主要考查根據遞推關系式求數列的通項公式,考查數列單調性的判斷方法,考查不等式成立的存在性問題的求解策略,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)零點分段法,分,,討論即可;(2)當時,原問題可轉化為:存在,使不等式成立,即.【詳解】解:(1)若時,,當時,原不等式可化為,解得,所以,當時,原不等式可化為,解得,所以,當時,原不等式可化為,解得,所以,綜上述:不等式的解集為;(2)當時,由得,即,故得,又由題意知:,即,故的范圍為.【點睛】本題考查解絕對值不等式以及不等式能成立求參數,考查學生的運算能力,是一道容易題.18.(1);(2)117人;(3)分布列見解析,【解析】
(1)首先求得和,再代入公式即可列方程,由此求得關于的線性回歸方程;(2)根據回歸直線方程計算公式,計算可得人數;(3)和被選中的人數分別為2和3,利用超幾何分布分布列的計算公式,計算出的分布列,并求得數學期望.【詳解】(1)由題,所以線性回歸方程為(若第一問求出.)(2)當時,所以預測2019年高考該校考入名校的人數約為117人(3)由題知和被選中的人數分別為2和3,進行演講的兩人是2018年畢業的人數的所有可能取值為0,1,2,,的分布列為012【點睛】本小題主要考查平均數有關計算,考查回歸直線方程的計算,考查期望的計算,考查超幾何分布和數據處理能力,屬于中檔題.19.(1)(2)【解析】
(1)利用等差數列的通項公式以及等比中項求出公差,從而求出,再利用等比數列的前項和公式即可求解.(2)由(1)求出,再利用裂項求和法即可求解.【詳解】(1),且,,依次成等比數列,,即:,,,,,;(2),.【點睛】本題考查了等差數列、等比數列的通項公式、等比數列的前項和公式、裂項求和法,需熟記公式,屬于基礎題.20.(1)證明見詳解;(2)【解析】
(1)求出函數的導函數,由在處取得極值1,可得且.解出,構造函數,分析其單調性,結合,即可得到的范圍,命題得證;
(2)由分離參數,得到恒成立,構造函數,求導函數,再構造函數,進行二次求導.由知,則在上單調遞增.根據零點存在定理可知有唯一零點,且.由此判斷出時,單調遞減,時,單調遞增,則,即.由得,再次構造函數,求導分析單調性,從而得,即,最終求得,則.【詳解】解:(1)由題知,∵函數在,處取得極值1,,且,,,令,則為增函數,,即成立.(2)不等式恒成立,即不等式恒成立,即恒成立,令,則令,則,,,在上單調遞增,且,有唯一零點,且,當時,,,單調遞減;當時,,,單調遞增.,由整理得,令,則方程等價于而在上恒大于零,在上單調遞增,.,∴實數的取值范圍為.【點睛】本題考查了函數的極值,利用導函數判斷函數的單調性,函數的零點存在定理,證明不等式,解決不等式恒成立問題.其中多次構造函數,是解題的關鍵,屬于綜合性很強的難題.21.(1),;(2).【解析】
(1)根據題意同時利用等差、等比數列的通項公式即可求得數列和的通項公式;(2)求出數列的通項公式,再利用錯位相減法即可求得數列的前2020項的和.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《小英雄雨來》觀后感(合集15篇)
- 年產200噸醫藥中間體項目可行性研究報告(模板范文)
- 家醫上門服務的政策支持與執行策略
- 海洋科技創新的發展框架與路徑
- 新疆烏魯木齊市實驗學校2023-2024學年高三上學期1月月考生物含解析
- 小學均衡發展教育班會
- 珠海藝術職業學院《計算機導論》2023-2024學年第二學期期末試卷
- 皖江工學院《廣告策劃與制作》2023-2024學年第二學期期末試卷
- 心理學知識普及課件
- 開封職業學院《分離工程》2023-2024學年第二學期期末試卷
- 高中英語新課程標準解讀課件
- 廣東開放大學2024年秋《國家安全概論(S)(本專)》形成性考核作業參考答案
- 小學3-6年級英語知識點(必背)
- 2024風力發電機組運行及維護要求
- 建筑與市政工程無障礙規范知識培訓
- 《結直腸癌診療規范(2023)》解讀
- 軟土地層臨近地鐵基坑施工影響控制研究
- 廣東省深圳市2024年重點中學小升初數學入學考試卷含解析
- 保密協議簡單合同范本
- 學校工作作風建設存在的問題及整改措施范文三篇
- DL∕ T 855-2004 電力基本建設火電設備維護保管規程
評論
0/150
提交評論