




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省池州市東至二中2025屆普通高中高三第一次聯(lián)合考試數(shù)學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,,則集合()A. B. C. D.2.命題:存在實數(shù),對任意實數(shù),使得恒成立;:,為奇函數(shù),則下列命題是真命題的是()A. B. C. D.3.已知直線,,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.某校團委對“學生性別與中學生追星是否有關”作了一次調查,利用列聯(lián)表,由計算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結論是()A.有99%以上的把握認為“學生性別與中學生追星無關”B.有99%以上的把握認為“學生性別與中學生追星有關”C.在犯錯誤的概率不超過0.5%的前提下,認為“學生性別與中學生追星無關”D.在犯錯誤的概率不超過0.5%的前提下,認為“學生性別與中學生追星有關”5.已知函數(shù),若恒成立,則滿足條件的的個數(shù)為()A.0 B.1 C.2 D.36.展開式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.12807.己知,,,則()A. B. C. D.8.蒙特卡洛算法是以概率和統(tǒng)計的理論、方法為基礎的一種計算方法,將所求解的問題同一定的概率模型相聯(lián)系;用均勻投點實現(xiàn)統(tǒng)計模擬和抽樣,以獲得問題的近似解,故又稱統(tǒng)計模擬法或統(tǒng)計實驗法.現(xiàn)向一邊長為的正方形模型內均勻投點,落入陰影部分的概率為,則圓周率()A. B.C. D.9.為了加強“精準扶貧”,實現(xiàn)偉大復興的“中國夢”,某大學派遣甲、乙、丙、丁、戊五位同學參加三個貧困縣的調研工作,每個縣至少去1人,且甲、乙兩人約定去同一個貧困縣,則不同的派遣方案共有()A.24 B.36 C.48 D.6410.已知函數(shù)的圖像上有且僅有四個不同的關于直線對稱的點在的圖像上,則的取值范圍是()A. B. C. D.11.已知,則()A. B. C. D.212.在展開式中的常數(shù)項為A.1 B.2 C.3 D.7二、填空題:本題共4小題,每小題5分,共20分。13.工人在安裝一個正六邊形零件時,需要固定如圖所示的六個位置的螺栓.若按一定順序將每個螺栓固定緊,但不能連續(xù)固定相鄰的2個螺栓.則不同的固定螺栓方式的種數(shù)是________.14.在中,,,,則繞所在直線旋轉一周所形成的幾何體的表面積為______________.15.在中,,,,則__________.16.在的展開式中,的系數(shù)為______用數(shù)字作答三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)選修4-5:不等式選講設函數(shù).(1)當時,求不等式的解集;(2)若在上恒成立,求實數(shù)的取值范圍.18.(12分)已知函數(shù)的最大值為2.(Ⅰ)求函數(shù)在上的單調遞減區(qū)間;(Ⅱ)中,,角所對的邊分別是,且,求的面積.19.(12分)已知橢圓的右焦點為,直線被稱作為橢圓的一條準線,點在橢圓上(異于橢圓左、右頂點),過點作直線與橢圓相切,且與直線相交于點.(1)求證:.(2)若點在軸的上方,當?shù)拿娣e最小時,求直線的斜率.附:多項式因式分解公式:20.(12分)設為等差數(shù)列的前項和,且,.(1)求數(shù)列的通項公式;(2)若滿足不等式的正整數(shù)恰有個,求正實數(shù)的取值范圍.21.(12分)某市環(huán)保部門對該市市民進行了一次垃圾分類知識的網(wǎng)絡問卷調查,每位市民僅有一次參加機會,通過隨機抽樣,得到參與問卷調查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結果如表所示:組別男235151812女051010713(1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關注者”,請完成答題卡中的列聯(lián)表,并判斷能否在犯錯誤概率不超過0.05的前提下,認為是否為“環(huán)保關注者”與性別有關?(2)若問卷得分不低于80分的人稱為“環(huán)保達人”.視頻率為概率.①在我市所有“環(huán)保達人”中,隨機抽取3人,求抽取的3人中,既有男“環(huán)保達人”又有女“環(huán)保達人”的概率;②為了鼓勵市民關注環(huán)保,針對此次的調查制定了如下獎勵方案:“環(huán)保達人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應的概率.如下表:紅包金額(單位:元)1020概率現(xiàn)某市民要參加此次問卷調查,記(單位:元)為該市民參加間卷調查獲得的紅包金額,求的分布列及數(shù)學期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822.(10分)已知拋物線:()上橫坐標為3的點與拋物線焦點的距離為4.(1)求p的值;(2)設()為拋物線上的動點,過P作圓的兩條切線分別與y軸交于A、B兩點.求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)集合的混合運算,即可容易求得結果.【詳解】,故可得.故選:D.【點睛】本題考查集合的混合運算,屬基礎題.2.A【解析】
分別判斷命題和的真假性,然后根據(jù)含有邏輯聯(lián)結詞命題的真假性判斷出正確選項.【詳解】對于命題,由于,所以命題為真命題.對于命題,由于,由解得,且,所以是奇函數(shù),故為真命題.所以為真命題.、、都是假命題.故選:A【點睛】本小題主要考查誘導公式,考查函數(shù)的奇偶性,考查含有邏輯聯(lián)結詞命題真假性的判斷,屬于基礎題.3.C【解析】
先得出兩直線平行的充要條件,根據(jù)小范圍可推導出大范圍,可得到答案.【詳解】直線,,的充要條件是,當a=2時,化簡后發(fā)現(xiàn)兩直線是重合的,故舍去,最終a=-1.因此得到“”是“”的充分必要條件.故答案為C.【點睛】判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.4.B【解析】
通過與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項.【詳解】解:,可得有99%以上的把握認為“學生性別與中學生追星有關”,故選B.【點睛】本題考查了獨立性檢驗的應用問題,屬于基礎題.5.C【解析】
由不等式恒成立問題分類討論:①當,②當,③當,考查方程的解的個數(shù),綜合①②③得解.【詳解】①當時,,滿足題意,②當時,,,,,故不恒成立,③當時,設,,令,得,,得,下面考查方程的解的個數(shù),設(a),則(a)由導數(shù)的應用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個使得成立,綜合①②③得:滿足條件的的個數(shù)是2個,故選:.【點睛】本題考查了不等式恒成立問題及利用導數(shù)研究函數(shù)的解得個數(shù),重點考查了分類討論的數(shù)學思想方法,屬難度較大的題型.6.A【解析】
根據(jù)二項式展開式的公式得到具體為:化簡求值即可.【詳解】根據(jù)二項式的展開式得到可以第一個括號里出項,第二個括號里出項,或者第一個括號里出,第二個括號里出,具體為:化簡得到-1280x2故得到答案為:A.【點睛】求二項展開式有關問題的常見類型及解題策略:(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).7.B【解析】
先將三個數(shù)通過指數(shù),對數(shù)運算變形,再判斷.【詳解】因為,,所以,故選:B.【點睛】本題主要考查指數(shù)、對數(shù)的大小比較,還考查推理論證能力以及化歸與轉化思想,屬于中檔題.8.A【解析】
計算出黑色部分的面積與總面積的比,即可得解.【詳解】由,∴.故選:A【點睛】本題考查了面積型幾何概型的概率的計算,屬于基礎題.9.B【解析】
根據(jù)題意,有兩種分配方案,一是,二是,然后各自全排列,再求和.【詳解】當按照進行分配時,則有種不同的方案;當按照進行分配,則有種不同的方案.故共有36種不同的派遣方案,故選:B.【點睛】本題考查排列組合、數(shù)學文化,還考查數(shù)學建模能力以及分類討論思想,屬于中檔題.10.D【解析】
根據(jù)對稱關系可將問題轉化為與有且僅有四個不同的交點;利用導數(shù)研究的單調性從而得到的圖象;由直線恒過定點,通過數(shù)形結合的方式可確定;利用過某一點曲線切線斜率的求解方法可求得和,進而得到結果.【詳解】關于直線對稱的直線方程為:原題等價于與有且僅有四個不同的交點由可知,直線恒過點當時,在上單調遞減;在上單調遞增由此可得圖象如下圖所示:其中、為過點的曲線的兩條切線,切點分別為由圖象可知,當時,與有且僅有四個不同的交點設,,則,解得:設,,則,解得:,則本題正確選項:【點睛】本題考查根據(jù)直線與曲線交點個數(shù)確定參數(shù)范圍的問題;涉及到過某一點的曲線切線斜率的求解問題;解題關鍵是能夠通過對稱性將問題轉化為直線與曲線交點個數(shù)的問題,通過確定直線恒過的定點,采用數(shù)形結合的方式來進行求解.11.B【解析】
結合求得的值,由此化簡所求表達式,求得表達式的值.【詳解】由,以及,解得..故選:B【點睛】本小題主要考查利用同角三角函數(shù)的基本關系式化簡求值,考查二倍角公式,屬于中檔題.12.D【解析】
求出展開項中的常數(shù)項及含的項,問題得解。【詳解】展開項中的常數(shù)項及含的項分別為:,,所以展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查了二項式定理中展開式的通項公式及轉化思想,考查計算能力,屬于基礎題。二、填空題:本題共4小題,每小題5分,共20分。13.60【解析】分析:首先將選定第一個釘,總共有6種方法,假設選定1號,之后分析第二步,第三步等,按照分類加法計數(shù)原理,可以求得共有10種方法,利用分步乘法計數(shù)原理,求得總共有種方法.詳解:根據(jù)題意,第一個可以從6個釘里任意選一個,共有6種選擇方法,并且是機會相等的,若第一個選1號釘?shù)臅r候,第二個可以選3,4,5號釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點睛:該題考查的是有關分類加法計數(shù)原理和分步乘法計數(shù)原理,在解題的過程中,需要逐個的將對應的過程寫出來,所以利用列舉法將對應的結果列出,而對于第一個選哪個是機會均等的,從而用乘法運算得到結果.14.【解析】
由題知該旋轉體為兩個倒立的圓錐底對底組合在一起,根據(jù)圓錐側面積計算公式可得.【詳解】解:由題知該旋轉體為兩個倒立的圓錐底對底組合在一起,在中,,,,如下圖所示,底面圓的半徑為,則所形成的幾何體的表面積為.故答案為:.【點睛】本題考查旋轉體的表面積計算問題,屬于基礎題.15.1【解析】
由已知利用余弦定理可得,即可解得的值.【詳解】解:,,,由余弦定理,可得,整理可得:,解得或(舍去).故答案為:1.【點睛】本題主要考查余弦定理在解三角形中的應用,屬于基礎題.16.1【解析】
利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數(shù).【詳解】二項展開式的通項為令得的系數(shù)為故答案為1.【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)當時,將原不等式化簡后兩邊平方,由此解出不等式的解集.(2)對分成三種情況,利用零點分段法去絕對值,將表示為分段函數(shù)的形式,根據(jù)單調性求得的取值范圍.【詳解】(1)時,可得,即,化簡得:,所以不等式的解集為.(2)①當時,由函數(shù)單調性可得,解得;②當時,,所以符合題意;③當時,由函數(shù)單調性可得,,解得綜上,實數(shù)的取值范圍為【點睛】本小題主要考查含有絕對值不等式的解法,考查不等式恒成立問題的求解,屬于中檔題.18.(Ⅰ)(Ⅱ)【解析】
(1)由題意,f(x)的最大值為所以而m>0,于是m=,f(x)=2sin(x+).由正弦函數(shù)的單調性可得x滿足即所以f(x)在[0,π]上的單調遞減區(qū)間為(2)設△ABC的外接圓半徑為R,由題意,得化簡得sinA+sinB=2sinAsinB.由正弦定理,得①由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9=0②將①式代入②,得2(ab)2-3ab-9=0,解得ab=3或(舍去),故19.(1)證明見解析(2)【解析】
(1)由得令可得,進而得到,同理,利用數(shù)量積坐標計算即可;(2),分,兩種情況討論即可.【詳解】(1)證明:點的坐標為.聯(lián)立方程,消去后整理為有,可得,,.可得點的坐標為.當時,可求得點的坐標為,,.有,故有.(2)若點在軸上方,因為,所以有,由(1)知①因為時.由(1)知,由函數(shù)單調遞增,可得此時.②當時,由(1)知令由,故當時,,此時函數(shù)單調遞增:當時,,此時函數(shù)單調遞減,又由,故函數(shù)的最小值,函數(shù)取最小值時,可求得.由①②知,若點在軸上方,當?shù)拿娣e最小時,直線的斜率為.【點睛】本題考查直線與橢圓的位置關系,涉及到分類討論求函數(shù)的最值,考查學生的運算求解能力,是一道難題.20.(1);(2).【解析】
(1)設等差數(shù)列的公差為,根據(jù)題意得出關于和的方程組,解出這兩個量的值,然后利用等差數(shù)列的通項公式可得出數(shù)列的通項公式;(2)求出,可得出,可知當為奇數(shù)時不等式不成立,只考慮為偶數(shù)的情況,利用數(shù)列單調性的定義判斷數(shù)列中偶數(shù)項構成的數(shù)列的單調性,由此能求出正實數(shù)的取值范圍.【詳解】(1)設等差數(shù)列的公差為,則,整理得,解得,,因此,;(2),滿足不等式的正整數(shù)恰有個,得,由于,若為奇數(shù),則不等式不可能成立.只考慮為偶數(shù)的情況,令,則,..當時,,則;當時,,則;當時,,則.所以,,又,,,,.因此,實數(shù)的取值范圍是.【點睛】本題考查數(shù)列的通項公式的求法,考查正實數(shù)的取值范圍的求法,考查等差數(shù)列的性質等基礎知識,考查運算求解能力,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廈門軟件職業(yè)技術學院《專業(yè)表現(xiàn)技法》2023-2024學年第二學期期末試卷
- 重慶航天職業(yè)技術學院《計算機體系結構》2023-2024學年第二學期期末試卷
- 唐山幼兒師范高等專科學校《感覺統(tǒng)合訓練法》2023-2024學年第二學期期末試卷
- 三門峽社會管理職業(yè)學院《影視編導基礎》2023-2024學年第二學期期末試卷
- 江蘇省鹽城市濱海縣2024-2025學年三下數(shù)學期末檢測模擬試題含解析
- 茅臺學院《圖形與時尚產品應用》2023-2024學年第二學期期末試卷
- 銅川職業(yè)技術學院《建筑構造2》2023-2024學年第二學期期末試卷
- 江西農業(yè)大學南昌商學院《朝鮮語高級語法I》2023-2024學年第二學期期末試卷
- 生產成本控制方法9671084
- 采購合同履行風險溝通案例庫建設重點基礎知識點
- 酶免疫技術(免疫學檢驗課件)
- 教育經(jīng)濟與管理院校排名
- 基本農田劃定技術規(guī)程(TDT1032-2011)
- 圍術期支氣管痙攣
- 高新區(qū)市政道路可行性研究報告
- 產品零部件防銹規(guī)定
- 籍貫對照表完整版
- AGC 系統(tǒng)安全事故應急處置程序
- 變位齒輪與變位齒輪傳動
- 二級精神病醫(yī)院評價細則
- TGIA 004-2020 垃圾填埋場地下水污染防治技術指南
評論
0/150
提交評論