第7屆全國(guó)大學(xué)生數(shù)學(xué)競(jìng)賽決賽非數(shù)學(xué)類(lèi)答案_第1頁(yè)
第7屆全國(guó)大學(xué)生數(shù)學(xué)競(jìng)賽決賽非數(shù)學(xué)類(lèi)答案_第2頁(yè)
第7屆全國(guó)大學(xué)生數(shù)學(xué)競(jìng)賽決賽非數(shù)學(xué)類(lèi)答案_第3頁(yè)
第7屆全國(guó)大學(xué)生數(shù)學(xué)競(jìng)賽決賽非數(shù)學(xué)類(lèi)答案_第4頁(yè)
第7屆全國(guó)大學(xué)生數(shù)學(xué)競(jìng)賽決賽非數(shù)學(xué)類(lèi)答案_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1第七屆全國(guó)大學(xué)生數(shù)學(xué)競(jìng)賽決賽試題解答(非數(shù)學(xué)類(lèi),2016年3月福州)一、填空題(本題30分,每小題6分)y=c2(4)f(λ1)f(λ2)···f(λn);(5)π.二、(本題14分)證明記則取曲面的法向量n=((z—c)f1,(z—c)f2,—(x—a)f1—(y—b)f2).記(x,y,z)為曲面上的點(diǎn),(X,Y,Z)為切平面上的點(diǎn),則曲面上過(guò)點(diǎn)(x,y,z)的切平面方程為[(zc)f1](Xx)+[(zc)f2](Yy)[(xa)f1+(yb)f2](Zz)=0.容易驗(yàn)證,對(duì)于任意(x,y,z)(zc),(X,Y,Z)=(a,b,c)都滿足切平面方程.結(jié)論得證.三、(本題14分)證明由f(x)在[a,b]上連續(xù)知f(x)在[a,b]上可積.令F(x)=f(t)dt,則FI(x)=—f(x).由此2四、(本題14分)證明我們要證明且(n),(—Ep),(p—q)可逆,所以五、(本題14分)解(1)In+In-2(2)由于0,所以0<tanx<1,tann+2x<tannx<tann-2x.從而In+2<In<In-2,于是In+2+In<2In<In-2+In.故<In< 知絕對(duì)收斂.當(dāng)0<p≤1時(shí),由于{I}單調(diào)減少并趨于0,由Leibniz判別法知,收斂.而I發(fā)散,所以3知發(fā)散.六、(本題14分)證明記上半球面S的底平面為D,方向向下,S和D圍成的區(qū)域?yàn)棣?由于σDPdydz+Rdxdy=—σDRdσ和題設(shè)條件,其中dσ是xy平面上的面積微元,我們得到注意到上式對(duì)任何r>0成立,我們由此證明R(x0,y0,z0)=0.若不然,設(shè)R(x0,y0,z0)0.注意到σDRdσ=R(ξ,ζ,z0)πr2,這里(ξ,ζ,z0)∈D.而當(dāng)r→0+,R(ξ,ζ,z0)→R(x0,y0,z0),故(*)式左端為一個(gè)2階的無(wú)窮小.類(lèi)似地,當(dāng)0,ⅢΩ是一個(gè)3階無(wú)窮而當(dāng)該積分趨于零的階高于3.故(*)式右端階高于左端.從而當(dāng)r很小時(shí)這與(*)式矛盾.由于在任何點(diǎn)處,R(x0,y0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論