江蘇省鹽城市建湖中學2025年高三第二次聯合考試數學試題試卷_第1頁
江蘇省鹽城市建湖中學2025年高三第二次聯合考試數學試題試卷_第2頁
江蘇省鹽城市建湖中學2025年高三第二次聯合考試數學試題試卷_第3頁
江蘇省鹽城市建湖中學2025年高三第二次聯合考試數學試題試卷_第4頁
江蘇省鹽城市建湖中學2025年高三第二次聯合考試數學試題試卷_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省鹽城市建湖中學2025年高三第二次聯合考試數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數的定義域為M={x|-2≤x≤2},值域為N={y|0≤y≤2},則函數的圖像可能是()A. B. C. D.2.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.3.已知函數,若,使得,則實數的取值范圍是()A. B.C. D.4.設點,P為曲線上動點,若點A,P間距離的最小值為,則實數t的值為()A. B. C. D.5.一個由兩個圓柱組合而成的密閉容器內裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則()A. B. C. D.6.設,分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.7.已知,是兩條不重合的直線,,是兩個不重合的平面,則下列命題中錯誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則8.如圖,平面ABCD,ABCD為正方形,且,E,F分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.9.已知集合,則()A. B.C. D.10.在的展開式中,的系數為()A.-120 B.120 C.-15 D.1511.已知a>0,b>0,a+b=1,若α=,則的最小值是()A.3 B.4 C.5 D.612.若與互為共軛復數,則()A.0 B.3 C.-1 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知定義在上的函數的圖象關于點對稱,,若函數圖象與函數圖象的交點為,則_____.14.在長方體中,,,,為的中點,則點到平面的距離是______.15.若雙曲線C:(,)的頂點到漸近線的距離為,則的最小值________.16.在中,,,,則________,的面積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)當時,求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.18.(12分)設橢圓,直線經過點,直線經過點,直線直線,且直線分別與橢圓相交于兩點和兩點.(Ⅰ)若分別為橢圓的左、右焦點,且直線軸,求四邊形的面積;(Ⅱ)若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說明理由.19.(12分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分數為,求的分布列和數學期望;(2)證明:數列是等比數列;(3)求甲在登山過程中,恰好登上第級臺階的概率.20.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.21.(12分)在平面直角坐標系中,曲線:(為參數,),曲線:(為參數).若曲線和相切.(1)在以為極點,軸非負半軸為極軸的極坐標系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.22.(10分)已知等差數列滿足,.(l)求等差數列的通項公式;(2)設,求數列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】因為對A不符合定義域當中的每一個元素都有象,即可排除;對B滿足函數定義,故符合;對C出現了定義域當中的一個元素對應值域當中的兩個元素的情況,不符合函數的定義,從而可以否定;對D因為值域當中有的元素沒有原象,故可否定.故選B.2.B【解析】

設,則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結果.【詳解】設,則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應用,屬于基礎題.3.C【解析】試題分析:由題意知,當時,由,當且僅當時,即等號是成立,所以函數的最小值為,當時,為單調遞增函數,所以,又因為,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點:函數的綜合問題.【方法點晴】本題主要考查了函數的綜合問題,其中解答中涉及到基本不等式求最值、函數的單調性及其應用、全稱命題與存在命題的應用等知識點的綜合考查,試題思維量大,屬于中檔試題,著重考查了學生分析問題和解答問題的能力,以及轉化與化歸思想的應用,其中解答中轉化為在的最小值不小于在上的最小值是解答的關鍵.4.C【解析】

設,求,作為的函數,其最小值是6,利用導數知識求的最小值.【詳解】設,則,記,,易知是增函數,且的值域是,∴的唯一解,且時,,時,,即,由題意,而,,∴,解得,.∴.故選:C.【點睛】本題考查導數的應用,考查用導數求最值.解題時對和的關系的處理是解題關鍵.5.B【解析】

根據空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B【點睛】本題考查圓柱的體積,屬于基礎題.6.C【解析】

根據表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構造出關系,求出離心率.【詳解】設,則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關系,構造出關系,得到離心率.屬于中檔題.7.D【解析】

根據線面平行和面面平行的性質,可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項A:若,,根據線面平行和面面平行的性質,有或,故A正確;選項B:若,,,由線面平行的判定定理,有,故B正確;選項C:若,,,故,所成的二面角為,則,故C正確;選項D,若,,有可能,故D不正確.故選:D【點睛】本題考查了空間中的平行垂直關系判斷,考查了學生邏輯推理,空間想象能力,屬于中檔題.8.C【解析】

分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設.則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學生對這些知識的理解掌握水平.9.C【解析】

由題意和交集的運算直接求出.【詳解】∵集合,∴.故選:C.【點睛】本題考查了集合的交集運算.集合進行交并補運算時,常借助數軸求解.注意端點處是實心圓還是空心圓.10.C【解析】

寫出展開式的通項公式,令,即,則可求系數.【詳解】的展開式的通項公式為,令,即時,系數為.故選C【點睛】本題考查二項式展開的通項公式,屬基礎題.11.C【解析】

根據題意,將a、b代入,利用基本不等式求出最小值即可.【詳解】∵a>0,b>0,a+b=1,∴,當且僅當時取“=”號.

答案:C【點睛】本題考查基本不等式的應用,“1”的應用,利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內涵:一正是首先要判斷參數是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最小);三相等是最后一定要驗證等號能否成立,屬于基礎題.12.C【解析】

計算,由共軛復數的概念解得即可.【詳解】,又由共軛復數概念得:,.故選:C【點睛】本題主要考查了復數的運算,共軛復數的概念.二、填空題:本題共4小題,每小題5分,共20分。13.4038.【解析】

由函數圖象的對稱性得:函數圖象與函數圖象的交點關于點對稱,則,,即,得解.【詳解】由知:得函數的圖象關于點對稱又函數的圖象關于點對稱則函數圖象與函數圖象的交點關于點對稱則故,即本題正確結果:【點睛】本題考查利用函數圖象的對稱性來求值的問題,關鍵是能夠根據函數解析式判斷出函數的對稱中心,屬中檔題.14.【解析】

利用等體積法求解點到平面的距離【詳解】由題在長方體中,,,所以,所以,設點到平面的距離為,解得故答案為:【點睛】此題考查求點到平面的距離,通過在三棱錐中利用等體積法求解,關鍵在于合理變換三棱錐的頂點.15.【解析】

根據雙曲線的方程求出其中一條漸近線,頂點,再利用點到直線的距離公式可得,由,利用基本不等式即可求解.【詳解】由雙曲線C:(,,可得一條漸近線,一個頂點,所以,解得,則,當且僅當時,取等號,所以的最小值為.故答案為:【點睛】本題考查了雙曲線的幾何性質、點到直線的距離公式、基本不等式求最值,注意驗證等號成立的條件,屬于基礎題.16.【解析】

利用余弦定理可求得的值,進而可得出的值,最后利用三角形的面積公式可得出的面積.【詳解】由余弦定理得,則,因此,的面積為.故答案為:;.【點睛】本題考查利用余弦定理解三角形,同時也考查了三角形面積的計算,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)(2,+∞)【解析】試題分析:(Ⅰ)由題意零點分段即可確定不等式的解集為;(Ⅱ)由題意可得面積函數為為,求解不等式可得實數a的取值范圍為試題解析:(I)當時,化為,當時,不等式化為,無解;當時,不等式化為,解得;當時,不等式化為,解得.所以的解集為.(II)由題設可得,所以函數的圖像與x軸圍成的三角形的三個頂點分別為,,,的面積為.由題設得,故.所以a的取值范圍為18.(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)不能,證明見解析【解析】

(Ⅰ)計算得到故,,,,計算得到面積.(Ⅱ)設為,聯立方程得到,計算,同理,根據得到,得到證明.(Ⅲ)設中點為,根據點差法得到,同理,故,得到結論.【詳解】(Ⅰ),,故,,,.故四邊形的面積為.(Ⅱ)設為,則,故,設,,故,,同理可得,,故,即,,故.(Ⅲ)設中點為,則,,相減得到,即,同理可得:的中點,滿足,故,故四邊形不能為矩形.【點睛】本題考查了橢圓內四邊形的面積,形狀,根據四邊形形狀求參數,意在考查學生的計算能力和綜合應用能力.19.見解析【解析】

(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所以的數學期望.(2)由題可得,所以,又,,所以,所以是以為首項,為公比的等比數列.(3)由(2)可得.20.(1)證明見解析(2)證明見解析【解析】

(1)先根據絕對值不等式求得的最大值,從而得到,再利用基本不等式進行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個不等式,再進行不等式相加,即可得答案.【詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.【點睛】本題考查絕對值不等式、應用基本不等式證明不等式,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和推理論證能力.21.(1);(2)【解析】

(1)消去參數,將圓的參數方程,轉化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標方程.(2)利用圓的參數方程以及輔助角公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論