




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
新疆哈密石油中學2025年高考數學試題壓軸試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某學校組織學生參加英語測試,成績的頻率分布直方圖如圖,數據的分組依次為,若低于60分的人數是18人,則該班的學生人數是()A.45 B.50 C.55 D.602.函數的定義域為,集合,則()A. B. C. D.3.設是兩條不同的直線,是兩個不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,,則 D.若,,,則4.使得的展開式中含有常數項的最小的n為()A. B. C. D.5.設橢圓:的右頂點為A,右焦點為F,B、C為橢圓上關于原點對稱的兩點,直線BF交直線AC于M,且M為AC的中點,則橢圓E的離心率是()A. B. C. D.6.函數的圖象大致為()A. B.C. D.7.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關系為()A.b>c>a B.c>b>a C.a>b>c D.b>a>c8.若復數滿足,則對應的點位于復平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.向量,,且,則()A. B. C. D.10.如圖所示的“數字塔”有以下規律:每一層最左與最右的數字均為2,除此之外每個數字均為其兩肩的數字之積,則該“數字塔”前10層的所有數字之積最接近()A. B. C. D.11.如圖是某地區2000年至2016年環境基礎設施投資額(單位:億元)的折線圖.則下列結論中表述不正確的是()A.從2000年至2016年,該地區環境基礎設施投資額逐年增加;B.2011年該地區環境基礎設施的投資額比2000年至2004年的投資總額還多;C.2012年該地區基礎設施的投資額比2004年的投資額翻了兩番;D.為了預測該地區2019年的環境基礎設施投資額,根據2010年至2016年的數據(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據該模型預測該地區2019的環境基礎設施投資額為256.5億元.12.若函數恰有3個零點,則實數的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數是偶函數,直線與函數的圖象自左向右依次交于四個不同點A,B,C,D.若AB=BC,則實數t的值為_________.14.已知數列的前項和為,且成等差數列,,數列的前項和為,則滿足的最小正整數的值為______________.15.在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)16.如圖所示,邊長為1的正三角形中,點,分別在線段,上,將沿線段進行翻折,得到右圖所示的圖形,翻折后的點在線段上,則線段的最小值為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知三棱柱中,與是全等的等邊三角形.(1)求證:;(2)若,求二面角的余弦值.18.(12分)如圖,點為圓:上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.(1)求曲線的方程;(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,且,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.19.(12分)在平面直角坐標系中,曲線的參數方程為(為參數),以原點為極點,軸的正半軸為極軸建立極坐標系,直線極坐標方程為.若直線交曲線于,兩點,求線段的長.20.(12分)已知函數(1)若,試討論的單調性;(2)若,實數為方程的兩不等實根,求證:.21.(12分)已知函數,曲線在點處的切線方程為求a,b的值;證明:.22.(10分)已知關于的不等式解集為().(1)求正數的值;(2)設,且,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據頻率分布直方圖中頻率=小矩形的高×組距計算成績低于60分的頻率,再根據樣本容量求出班級人數.【詳解】根據頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學生人數)是60(人).故選:D.本題考查了頻率分布直方圖的應用問題,也考查了頻率的應用問題,屬于基礎題2.A【解析】
根據函數定義域得集合,解對數不等式得到集合,然后直接利用交集運算求解.【詳解】解:由函數得,解得,即;又,解得,即,則.故選:A.本題考查了交集及其運算,考查了函數定義域的求法,是基礎題.3.C【解析】
根據空間中直線與平面、平面與平面位置關系相關定理依次判斷各個選項可得結果.【詳解】對于,當為內與垂直的直線時,不滿足,錯誤;對于,設,則當為內與平行的直線時,,但,錯誤;對于,由,知:,又,,正確;對于,設,則當為內與平行的直線時,,錯誤.故選:.本題考查立體幾何中線面關系、面面關系有關命題的辨析,考查學生對于平行與垂直相關定理的掌握情況,屬于基礎題.4.B【解析】二項式展開式的通項公式為,若展開式中有常數項,則,解得,當r取2時,n的最小值為5,故選B【考點定位】本題考查二項式定理的應用.5.C【解析】
連接,為的中位線,從而,且,進而,由此能求出橢圓的離心率.【詳解】如圖,連接,橢圓:的右頂點為A,右焦點為F,B、C為橢圓上關于原點對稱的兩點,不妨設B在第二象限,直線BF交直線AC于M,且M為AC的中點為的中位線,,且,,解得橢圓的離心率.故選:C本題考查了橢圓的幾何性質,考查了運算求解能力,屬于基礎題.6.A【解析】
根據函數的奇偶性和單調性,排除錯誤選項,從而得出正確選項.【詳解】因為,所以是偶函數,排除C和D.當時,,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A本小題主要考查函數圖像的識別,考查利用導數研究函數的單調區間和極值,屬于中檔題.7.A【解析】
利用指數函數、對數函數的單調性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關系為b>c>a.故選:A.本題考查三個數的大小的判斷,考查指數函數、對數函數的單調性等基礎知識,考查運算求解能力,是基礎題.8.D【解析】
利用復數模的計算、復數的除法化簡復數,再根據復數的幾何意義,即可得答案;【詳解】,對應的點,對應的點位于復平面的第四象限.故選:D.本題考查復數模的計算、復數的除法、復數的幾何意義,考查運算求解能力,屬于基礎題.9.D【解析】
根據向量平行的坐標運算以及誘導公式,即可得出答案.【詳解】故選:D本題主要考查了由向量平行求參數以及誘導公式的應用,屬于中檔題.10.A【解析】
結合所給數字特征,我們可將每層數字表示成2的指數的形式,觀察可知,每層指數的和成等比數列分布,結合等比數列前項和公式和對數恒等式即可求解【詳解】如圖,將數字塔中的數寫成指數形式,可發現其指數恰好構成“楊輝三角”,前10層的指數之和為,所以原數字塔中前10層所有數字之積為.故選:A本題考查與“楊輝三角”有關的規律求解問題,邏輯推理,等比數列前項和公式應用,屬于中檔題11.D【解析】
根據圖像所給的數據,對四個選項逐一進行分析排除,由此得到表述不正確的選項.【詳解】對于選項,由圖像可知,投資額逐年增加是正確的.對于選項,投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對于選項,令代入回歸直線方程得億元,故選項描述不正確.所以本題選D.本小題主要考查圖表分析能力,考查利用回歸直線方程進行預測的方法,屬于基礎題.12.B【解析】
求導函數,求出函數的極值,利用函數恰有三個零點,即可求實數的取值范圍.【詳解】函數的導數為,令,則或,上單調遞減,上單調遞增,所以0或是函數y的極值點,函數的極值為:,函數恰有三個零點,則實數的取值范圍是:.故選B.該題考查的是有關結合函數零點個數,來確定參數的取值范圍的問題,在解題的過程中,注意應用導數研究函數圖象的走向,利用數形結合思想,轉化為函數圖象間交點個數的問題,難度不大.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由是偶函數可得時恒有,根據該恒等式即可求得,,的值,從而得到,令,可解得,,三點的橫坐標,根據可列關于的方程,解出即可.【詳解】解:因為是偶函數,所以時恒有,即,所以,所以,解得,,;所以;由,即,解得;故,.由,即,解得.故,.因為,所以,即,解得,故答案為:.本題考查函數奇偶性的性質及二次函數的圖象、性質,考查學生的計算能力,屬中檔題.14.1【解析】
本題先根據公式初步找到數列的通項公式,然后根據等差中項的性質可解得的值,即可確定數列的通項公式,代入數列的表達式計算出數列的通項公式,然后運用裂項相消法計算出前項和,再代入不等式進行計算可得最小正整數的值.【詳解】由題意,當時,.當時,.則,.,,成等差數列,,即,解得..,...,.即,,即,,,,即.滿足的最小正整數的值為1.故答案為:1.本題主要考查數列求通項公式、裂項相消法求前項和,考查了轉化思想、方程思想,考查了不等式的計算、邏輯思維能力和數學運算能力.15.①②④【解析】
①∵,∴平面
,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據線面垂直的判定和性質或三垂線定理,可判斷命題②;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,運用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關于面對稱的點,使得點在平面內,根據對稱性和兩點之間線段最短,可求得當點在點時,在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面
,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;
②在直線上運動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,設正方體的棱長為2.則:,,所以,設面的法向量為,則,即,令,則,設面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關于面對稱的點,使得點在平面內,則,所以,當點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設點的坐標為,,,所以,所以,又所以,所以,,,故④正確.
故答案為:①②④.本題考查空間里的線線,線面,面面關系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運用對稱的思想,兩點之間線段最短進行求解,屬于難度題.16.【解析】
設,,在中利用正弦定理得出關于的函數,從而可得的最小值.【詳解】解:設,,則,,∴,在中,由正弦定理可得,即,∴,∴當即時,取得最小值.故答案為.本題考查正弦定理解三角形的應用,屬中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】
(1)取BC的中點O,則,由是等邊三角形,得,從而得到平面,由此能證明(2)以,,所在直線分別為x,y,z軸建立空間直角坐標系,利用向量法求得二面角的余弦值,得到結果.【詳解】(1)取BC的中點O,連接,,由于與是等邊三角形,所以有,,且,所以平面,平面,所以.(2)設,是全等的等邊三角形,所以,又,由余弦定理可得,在中,有,所以以,,所在直線分別為x,y,z軸建立空間直角坐標系,如圖所示,則,,,設平面的一個法向量為,則,令,則,又平面的一個法向量為,所以二面角的余弦值為,即二面角的余弦值為.該題考查的是有關立體幾何的問題,涉及到的知識點有利用線面垂直證明線性垂直,利用向量法求二面角的余弦值,屬于中檔題目.18.(1)(2)不存在;詳見解析【解析】
(1)設,,,通過,即為的中點,轉化求解,點的軌跡的方程.(2)設直線的方程為,先根據,可得,①,再根據韋達定理,點在橢圓上可得,②,將①代入②可得,該方程無解,問題得以解決【詳解】(1)設,,則,,由題意知,所以為中點,由中點坐標公式得,即,又點在圓:上,故滿足,得.曲線的方程.(2)由題意知直線的斜率存在且不為零,設直線的方程為,因為,故,即①,聯立,消去得:,設,,,,,因為四邊形為平行四邊形,故,點在橢圓上,故,整理得②,將①代入②,得,該方程無解,故這樣的直線不存在.本題考查點的軌跡方程的求法、滿足條件的點是否存在的判斷與直線方程的求法,考查數學轉化思想方法,是中檔題.19.【解析】
由,化簡得,由,所以直線的直角坐標方程為,因為曲線的參數方程為,整理得,直線的方程與曲線的方程聯立,,整理得,設,則,根據弦長公式求解即可.【詳解】由,化簡得,又因為,所以直線的直角坐標方程為,因為曲線的參數方程為,消去,整理得,將直線的方程與曲線的方程聯立,,消去,整理得,設,則,所以,將,代入上式,整理得.本題考查參數方程,極坐標方程的應用,結合弦長公式的運用,屬于中檔題.20.(1)答案不唯一,具體見解析(2)證明見解析【解析】
(1)根據題意得,分與討論即可得到函數的單調性;(2)根據題意構造函數,得,參變分離得,分析不等式,即轉化為,設,再構造函數,利用導數得單調性,進而得證.【詳解】(1)依題意,當時,,①當時,恒成立,此時在定義域上單調遞增;②當時,若,;若,;故此時的單調遞增區間為,單調遞減區間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設),即證,令,設,則,在單調遞減,即,從而有.方法2:由得令,則,當時,時,故在上單調遞增,在上單調遞減,不妨設,則,要證,只需證,易知,故只需證,即證令,(),則==,(也可代入后再求導)在上單調遞減,,故對于時,總有.由此得本題考查了函數的單調性、最值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 總覽紡織工程師考試中的軟技能考察試題及答案
- 浙江林場考試試題及答案
- 激光技術工程師試題探討
- 深度理解醫學基礎知識概念的重要性試題及答案
- 藥品研發中的倫理標準研究試題及答案
- 探討文化產業管理證書考試的試題與答案
- 營養指南更新的背景與公共營養師考試知識的對接試題及答案
- 系統架構設計師考試有效學習方法探討試題及答案
- 系統管理師筆試中的常見錯誤試題及答案
- 激光技術工程師重要知識點總結試題及答案
- 舌后墜術后護理個案
- 樊昌信通信原理課后答案
- 創業思維-創造你喜愛的人生(浙江旅游職業學院)知到智慧樹答案
- 2024年10月自考03709馬克思主義基本原理概論試題及答案含解析
- 《數字中國建設整體布局規劃》解讀報告
- 智慧旅游平臺運營方案
- 《石油化工金屬管道布置設計規范》SHT3012-2011
- 《斷層解剖學》期末考試復習題庫(含答案)
- 2024版口腔癌術后口腔沖洗技術培訓課件
- 2024年注冊安全工程師考試金屬非金屬礦山(初級)安全生產實務試題及答案指導
- 五年級上冊數學培優奧數講義-第17講 不定方程
評論
0/150
提交評論