




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
重慶市實驗外國語學校2025屆高三第一次(4月)月考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知將函數(,)的圖象向右平移個單位長度后得到函數的圖象,若和的圖象都關于對稱,則下述四個結論:①②③④點為函數的一個對稱中心其中所有正確結論的編號是()A.①②③ B.①③④ C.①②④ D.②③④2.已知集合,,若,則實數的值可以為()A. B. C. D.3.函數的圖象大致是()A. B.C. D.4.2019年末,武漢出現新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區,傳播速度很快.因這種病毒是以前從未在人體中發現的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發熱患者和與確診患者的密切接觸者等“四類”人員,強化網格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現陽性,則該家庭為“感染高危戶”.設該家庭每個成員檢測呈陽性的概率均為()且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當時,最大,則()A. B. C. D.5.已知集合,,,則()A. B. C. D.6.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.37.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.8.明代數學家程大位(1533~1606年),有感于當時籌算方法的不便,用其畢生心血寫出《算法統宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.9.設變量滿足約束條件,則目標函數的最大值是()A.7 B.5 C.3 D.210.如圖,在中,,是上一點,若,則實數的值為()A. B. C. D.11.已知,,分別是三個內角,,的對邊,,則()A. B. C. D.12.已知函數且的圖象恒過定點,則函數圖象以點為對稱中心的充要條件是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,直角坐標系中網格小正方形的邊長為1,若向量、、滿足,則實數的值為_______.14.已知二面角α﹣l﹣β為60°,在其內部取點A,在半平面α,β內分別取點B,C.若點A到棱l的距離為1,則△ABC的周長的最小值為_____.15.已知向量滿足,,則______________.16.已知向量,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,為邊上一點,,.(1)求;(2)若,,求.18.(12分)已知a>0,證明:1.19.(12分)在直角坐標系中,點的坐標為,直線的參數方程為(為參數,為常數,且).以直角坐標系的原點為極點,軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系,圓的極坐標方程為.設點在圓外.(1)求的取值范圍.(2)設直線與圓相交于兩點,若,求的值.20.(12分)已知直線:(為參數),曲線(為參數).(1)設與相交于,兩點,求;(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線距離的最小值.21.(12分)某精密儀器生產車間每天生產個零件,質檢員小張每天都會隨機地從中抽取50個零件進行檢查是否合格,若較多零件不合格,則需對其余所有零件進行檢查.根據多年的生產數據和經驗,這些零件的長度服從正態分布(單位:微米),且相互獨立.若零件的長度滿足,則認為該零件是合格的,否則該零件不合格.(1)假設某一天小張抽查出不合格的零件數為,求及的數學期望;(2)小張某天恰好從50個零件中檢查出2個不合格的零件,若以此頻率作為當天生產零件的不合格率.已知檢查一個零件的成本為10元,而每個不合格零件流入市場帶來的損失為260元.假設充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.附:若隨機變量服從正態分布,則.22.(10分)已知函數,當時,有極大值3;(1)求,的值;(2)求函數的極小值及單調區間.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
首先根據三角函數的平移規則表示出,再根據對稱性求出、,即可求出的解析式,從而驗證可得;【詳解】解:由題意可得,又∵和的圖象都關于對稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯誤.故選:B【點睛】本題考查三角函數的性質的應用,三角函數的變換規則,屬于基礎題.2.D【解析】
由題意可得,根據,即可得出,從而求出結果.【詳解】,且,,∴的值可以為.故選:D.【點睛】考查描述法表示集合的定義,以及并集的定義及運算.3.A【解析】
根據復合函數的單調性,同增異減以及采用排除法,可得結果.【詳解】當時,,由在遞增,所以在遞增又是增函數,所以在遞增,故排除B、C當時,若,則所以在遞減,而是增函數所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數的大致圖象的判斷,關鍵在于對復合函數單調性的理解,記住常用的結論:增+增=增,增-減=增,減+減=減,復合函數單調性同增異減,屬中檔題.4.A【解析】
根據題意分別求出事件A:檢測5個人確定為“感染高危戶”發生的概率和事件B:檢測6個人確定為“感染高危戶”發生的概率,即可得出的表達式,再根據基本不等式即可求出.【詳解】設事件A:檢測5個人確定為“感染高危戶”,事件B:檢測6個人確定為“感染高危戶”,∴,.即設,則∴當且僅當即時取等號,即.故選:A.【點睛】本題主要考查概率的計算,涉及相互獨立事件同時發生的概率公式的應用,互斥事件概率加法公式的應用,以及基本不等式的應用,解題關鍵是對題意的理解和事件的分解,意在考查學生的數學運算能力和數學建模能力,屬于較難題.5.A【解析】
求得集合中函數的值域,由此求得,進而求得.【詳解】由,得,所以,所以.故選:A【點睛】本小題主要考查函數值域的求法,考查集合補集、交集的概念和運算,屬于基礎題.6.D【解析】
畫出可行域,將化為,通過平移即可判斷出最優解,代入到目標函數,即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標函數為直線方程的斜截式,.由圖可知當直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【點睛】本題考查了線性規劃問題.一般第一步畫出可行域,然后將目標函數轉化為的形式,在可行域內通過平移找到最優解,將最優解帶回到目標函數即可求出最值.注意畫可行域時,邊界線的虛實問題.7.D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點睛】本題主要考查了橢圓的定義,橢圓標準方程的求解.8.C【解析】
根據程序框圖依次計算得到答案.【詳解】,;,;,;,;,此時不滿足,跳出循環,輸出結果為,由題意,得.故選:【點睛】本題考查了程序框圖的計算,意在考查學生的理解能力和計算能力.9.B【解析】
由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,聯立方程組求得最優解的坐標,把最優解的坐標代入目標函數得結論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規劃中,利用可行域求目標函數的最值,屬于簡單題.求目標函數最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優解對應點(在可行域內平移變形后的目標函數,最先通過或最后通過的頂點就是最優解);(3)將最優解坐標代入目標函數求出最值.10.C【解析】
由題意,可根據向量運算法則得到(1﹣m),從而由向量分解的唯一性得出關于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點睛】本題考查平面向量基本定理,根據分解的唯一性得到所求參數的方程是解答本題的關鍵,本題屬于基礎題.11.C【解析】
原式由正弦定理化簡得,由于,可求的值.【詳解】解:由及正弦定理得.因為,所以代入上式化簡得.由于,所以.又,故.故選:C.【點睛】本題主要考查正弦定理解三角形,三角函數恒等變換等基礎知識;考查運算求解能力,推理論證能力,屬于中檔題.12.A【解析】
由題可得出的坐標為,再利用點對稱的性質,即可求出和.【詳解】根據題意,,所以點的坐標為,又,所以.故選:A.【點睛】本題考查指數函數過定點問題和函數對稱性的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據圖示分析出、、的坐標表示,然后根據坐標形式下向量的數量積為零計算出的取值.【詳解】由圖可知:,所以,又因為,所以,所以.故答案為:.【點睛】本題考查向量的坐標表示以及坐標形式下向量的數量積運算,難度較易.已知,若,則有.14.【解析】
作A關于平面α和β的對稱點M,N,交α和β與D,E,連接MN,AM,AN,DE,根據對稱性三角形ADC的周長為AB+AC+BC=MB+BC+CN,當四點共線時長度最短,結合對稱性和余弦定理求解.【詳解】作A關于平面α和β的對稱點M,N,交α和β與D,E,連接MN,AM,AN,DE,根據對稱性三角形ABC的周長為AB+AC+BC=MB+BC+CN,當M,B,C,N共線時,周長最小為MN設平面ADE交l于,O,連接OD,OE,顯然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根據余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案為:.【點睛】此題考查求空間三角形邊長的最值,關鍵在于根據幾何性質找出對稱關系,結合解三角形知識求解.15.1【解析】
首先根據向量的數量積的運算律求出,再根據計算可得;【詳解】解:因為,所以又所以所以故答案為:【點睛】本題考查平面向量的數量積的運算,屬于基礎題.16.【解析】
求出,然后由模的平方轉化為向量的平方,利用數量積的運算計算.【詳解】由題意得,.,.,,.故答案為:.【點睛】本題考查求向量的模,掌握數量積的定義與運算律是解題基礎.本題關鍵是用數量積的定義把模的運算轉化為數量積的運算.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)4【解析】
(1),利用兩角差的正弦公式計算即可;(2)設,在中,用正弦定理將用x表示,在中用一次余弦定理即可解決.【詳解】(1)∵,∴,所以,.(2)∵,∴設,,在中,由正弦定理得,,∴,∴,∵,∴∴.【點睛】本題考查兩角差的正弦公式以及正余弦定理解三角形,考查學生的運算求解能力,是一道容易題.18.證明見解析【解析】
利用分析法,證明a即可.【詳解】證明:∵a>0,∴a1,∴a1≥0,∴要證明1,只要證明a1(a)1﹣4(a)+4,只要證明:a,∵a1,∴原不等式成立.【點睛】本題考查不等式的證明,著重考查分析法的運用,考查推理論證能力,屬于中檔題.19.(1)(2)【解析】
(1)首先將曲線化為直角坐標方程,由點在圓外,則解得即可;(2)將直線的參數方程代入圓的普通方程,設、對應的參數分別為,列出韋達定理,由及在圓的上方,得,即即可解得;【詳解】解:(1)曲線的直角坐標方程為.由點在圓外,得點的坐標為,結合,解得.故的取值范圍是.(2)由直線的參數方程,得直線過點,傾斜角為,將直線的參數方程代入,并整理得,其中.設、對應的參數分別為,則,.由及在圓的上方,得,即,代入①,得,,消去,得,結合,解得.故的值是.【點睛】本題考查極坐標方程化為直角坐標方程,直線的參數方程的幾何意義的應用,屬于中檔題.20.(1);(2).【解析】
(1)將直線和曲線化為普通方程,聯立直線和曲線,可得交點坐標,可得的值;(2)可得曲線的參數方程,利用點到直線的距離公式結合三角形的最值可得答案.【詳解】解:(1)直線的普通方程為,的普通方程.聯立方程組,解得與的交點為,,則.(2)曲線的參數方程為(為參數),故點的坐標為,從而點到直線的距離是,由此當時,取得最小值,且最小值為.【點睛】本題主要考查參數方程與普通方程的轉化
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電線電纜維修服務協議
- 定制家具設計建議協議
- 雙語客運值班員客運值班員崗位資格要求課件
- 鐵路市場營銷市場調查的類型和內容課件
- 水泥混凝土路面表面功能改善路基路面養護江西交通胡鳳輝課
- 中國之治開辟新境界課件
- 個百數表課件
- 【課件】二項分布與超幾何分布的應用+課件高二下學期數學人教A版(2019)選擇性必修第三冊
- 小提琴手勞動合同
- 不說臟話班會課件
- 2024年學校采購員崗位職責(五篇)
- 藥物臨床試驗儀器設備管理制度
- 基于深度學習的小學數學跨學科主題探究
- 2024年全國統一高考數學試卷(新高考Ⅱ)含答案
- DB65-T 4828-2024 和田玉(子料)鑒定
- 2022-2023學年北京市海淀區中關村中學八年級(下)期中數學試卷
- DB32-T 4765-2024 化工行業智能化改造數字化轉型網絡化聯接實施指南
- 龜兔賽跑英語故事帶翻譯完整版
- 中學駐校教官管理方案
- Siemens Simcenter:Simcenter聲振耦合分析技術教程.Tex.header
- 部編人教版七年級下-17課《紫藤蘿瀑布》名師-特級教師-余映潮公開課課件
評論
0/150
提交評論