




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025年西藏自治區拉薩市北京實驗中學下學期高三年級五調考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量與的夾角為,,,則()A. B.0 C.0或 D.2.已知正四面體的內切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.273.的展開式中的常數項為()A.-60 B.240 C.-80 D.1804.由曲線圍成的封閉圖形的面積為()A. B. C. D.5.已知函數,則的值等于()A.2018 B.1009 C.1010 D.20206.在滿足,的實數對中,使得成立的正整數的最大值為()A.5 B.6 C.7 D.97.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點,若點為上的任意一點,則的取值范圍為()A. B. C. D.8.已知全集,集合,,則()A. B. C. D.9.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則10.“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件11.若不等式在區間內的解集中有且僅有三個整數,則實數的取值范圍是()A. B.C. D.12.已知圓:,圓:,點、分別是圓、圓上的動點,為軸上的動點,則的最大值是()A. B.9 C.7 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數列,則的離心率為__________.14.如圖梯形為直角梯形,,圖中陰影部分為曲線與直線圍成的平面圖形,向直角梯形內投入一質點,質點落入陰影部分的概率是_____________15.(5分)某膳食營養科研機構為研究牛蛙體內的維生素E和鋅、硒等微量元素(這些元素可以延緩衰老,還能起到抗癌的效果)對人體的作用,現從只雌蛙和只雄蛙中任選只牛蛙進行抽樣試驗,則選出的只牛蛙中至少有只雄蛙的概率是____________.16.如圖,已知一塊半徑為2的殘缺的半圓形材料,O為半圓的圓心,,殘缺部分位于過點C的豎直線的右側,現要在這塊材料上裁出一個直角三角形,若該直角三角形一條邊在上,則裁出三角形面積的最大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:x24py(p為大于2的質數)的焦點為F,過點F且斜率為k(k0)的直線交C于A,B兩點,線段AB的垂直平分線交y軸于點E,拋物線C在點A,B處的切線相交于點G.記四邊形AEBG的面積為S.(1)求點G的軌跡方程;(2)當點G的橫坐標為整數時,S是否為整數?若是,請求出所有滿足條件的S的值;若不是,請說明理由.18.(12分)數列滿足.(1)求數列的通項公式;(2)設,為的前n項和,求證:.19.(12分)已知函數,且.(1)若,求的最小值,并求此時的值;(2)若,求證:.20.(12分)已知在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求直線的極坐標方程;(2)若直線與曲線交于,兩點,求的面積.21.(12分)在平面直角坐標系中,已知直線的參數方程為(為參數),圓的方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系.(1)求和的極坐標方程;(2)過且傾斜角為的直線與交于點,與交于另一點,若,求的取值范圍.22.(10分)已知橢圓的右頂點為,點在軸上,線段與橢圓的交點在第一象限,過點的直線與橢圓相切,且直線交軸于.設過點且平行于直線的直線交軸于點.(Ⅰ)當為線段的中點時,求直線的方程;(Ⅱ)記的面積為,的面積為,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由數量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B本題主要考查向量數量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.2.D【解析】
設正四面體的棱長為,取的中點為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內切球的半徑,在中,根據勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設正四面體的棱長為,取的中點為,連接,作正四面體的高為,則,,,設內切球的半徑為,內切球的球心為,則,解得:;設外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D本題主要考查了多面體的內切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎題.3.D【解析】
求的展開式中的常數項,可轉化為求展開式中的常數項和項,再求和即可得出答案.【詳解】由題意,中常數項為,中項為,所以的展開式中的常數項為:.故選:D本題主要考查二項式定理的應用和二項式展開式的通項公式,考查學生計算能力,屬于基礎題.4.A【解析】
先計算出兩個圖像的交點分別為,再利用定積分算兩個圖形圍成的面積.【詳解】封閉圖形的面積為.選A.本題考察定積分的應用,屬于基礎題.解題時注意積分區間和被積函數的選取.5.C【解析】
首先,根據二倍角公式和輔助角公式化簡函數解析式,根據所求函數的周期性,得到其周期為4,然后借助于三角函數的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C本題重點考查了三角函數的圖象與性質、三角恒等變換等知識,掌握輔助角公式化簡函數解析式是解題的關鍵,屬于中檔題.6.A【解析】
由題可知:,且可得,構造函數求導,通過導函數求出的單調性,結合圖像得出,即得出,從而得出的最大值.【詳解】因為,則,即整理得,令,設,則,令,則,令,則,故在上單調遞增,在上單調遞減,則,因為,,由題可知:時,則,所以,所以,當無限接近時,滿足條件,所以,所以要使得故當時,可有,故,即,所以:最大值為5.故選:A.本題主要考查利用導數求函數單調性、極值和最值,以及運用構造函數法和放縮法,同時考查轉化思想和解題能力.7.D【解析】
先求出橢圓方程,再利用橢圓的定義得到,利用二次函數的性質可求,從而可得的取值范圍.【詳解】由題設有,故,故橢圓,因為點為上的任意一點,故.又,因為,故,所以.故選:D.本題考查橢圓的幾何性質,一般地,如果橢圓的左、右焦點分別是,點為上的任意一點,則有,我們常用這個性質來考慮與焦點三角形有關的問題,本題屬于基礎題.8.B【解析】
直接利用集合的基本運算求解即可.【詳解】解:全集,集合,,則,故選:.本題考查集合的基本運算,屬于基礎題.9.C【解析】
根據空間中平行關系、垂直關系的相關判定和性質可依次判斷各個選項得到結果.【詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當垂直于的交線時才有,錯誤.故選:.本題考查空間中線面關系、面面關系相關命題的辨析,關鍵是熟練掌握空間中的平行關系與垂直關系的相關命題.10.A【解析】
首先利用二倍角正切公式由,求出,再根據充分條件、必要條件的定義判斷即可;【詳解】解:∵,∴可解得或,∴“”是“”的充分不必要條件.故選:A本題主要考查充分條件和必要條件的判斷,二倍角正切公式的應用是解決本題的關鍵,屬于基礎題.11.C【解析】
由題可知,設函數,,根據導數求出的極值點,得出單調性,根據在區間內的解集中有且僅有三個整數,轉化為在區間內的解集中有且僅有三個整數,結合圖象,可求出實數的取值范圍.【詳解】設函數,,因為,所以,或,因為時,,或時,,,其圖象如下:當時,至多一個整數根;當時,在內的解集中僅有三個整數,只需,,所以.故選:C.本題考查不等式的解法和應用問題,還涉及利用導數求函數單調性和函數圖象,同時考查數形結合思想和解題能力.12.B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關于軸的對稱點,,故的最大值為,故選B.考點:圓與圓的位置關系及其判定.【思路點睛】先根據兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設,,,根據勾股定理得出,而由橢圓的定義得出的周長為,有,便可求出和的關系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長,,成等差數列,設,,,而,根據勾股定理有:,解得:,由橢圓定義知:的周長為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.本題考查橢圓的離心率以及橢圓的定義的應用,考查計算能力.14.【解析】
聯立直線與拋物線方程求出交點坐標,再利用定積分求出陰影部分的面積,利用梯形的面積公式求出,最后根據幾何概型的概率公式計算可得;【詳解】解:聯立解得或,即,,,,,故答案為:本題考查幾何概型的概率公式的應用以及利用微積分基本定理求曲邊形的面積,屬于中檔題.15.【解析】
記只雌蛙分別為,只雄蛙分別為,從中任選只牛蛙進行抽樣試驗,其基本事件為,共15個,選出的只牛蛙中至少有只雄蛙包含的基本事件為,共9個,故選出的只牛蛙中至少有只雄蛙的概率是.16.【解析】
分兩種情況討論:(1)斜邊在BC上,設,則,(2)若在若一條直角邊在上,設,則,進一步利用導數的應用和三角函數關系式恒等變形和函數單調性即可求出最大值.【詳解】(1)斜邊在上,設,則,則,,從而.當時,此時,符合.(2)若一條直角邊在上,設,則,則,,由知.,當時,,單調遞增,當時,,單調遞減,.當,即時,最大.故答案為:.此題考查實際問題中導數,三角函數和函數單調性的綜合應用,注意分類討論把所有情況考慮完全,屬于一般性題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)當G點橫坐標為整數時,S不是整數.【解析】
(1)先求解導數,得出切線方程,聯立方程得出交點G的軌跡方程;(2)先求解弦長,再分別求解點到直線的距離,表示出四邊形的面積,結合點G的橫坐標為整數進行判斷.【詳解】(1)設,則,拋物線C的方程可化為,則,所以曲線C在點A處的切線方程為,在點B處的切線方程為,因為兩切線均過點G,所以,所以A,B兩點均在直線上,所以直線AB的方程為,又因為直線AB過點F(0,p),所以,即G點軌跡方程為;(2)設點G(,),由(1)可知,直線AB的方程為,即,將直線AB的方程與拋物線聯立,,整理得,所以,,解得,因為直線AB的斜率,所以,且,線段AB的中點為M,所以直線EM的方程為:,所以E點坐標為(0,),直線AB的方程整理得,則G到AB的距離,則E到AB的距離,所以,設,因為p是質數,且為整數,所以或,當時,,是無理數,不符題意,當時,,因為當時,,即是無理數,所以不符題意,當時,是無理數,不符題意,綜上,當G點橫坐標為整數時,S不是整數.本題主要考查直線與拋物線的位置關系,拋物線中的切線問題通常借助導數來求解,四邊形的面積問題一般轉化為三角形的面積和問題,表示出面積的表達式是求解的關鍵,側重考查數學運算的核心素養.18.(1)(2)證明見解析【解析】
(1)利用與的關系即可求解.(2)利用裂項求和法即可求解.【詳解】解析:(1)當時,;當,,可得,又∵當時也成立,;(2),本題主要考查了與的關系、裂項求和法,屬于基礎題.19.(1)最小值為,此時;(2)見解析【解析】
(1)由已知得,法一:,,根據二次函數的最值可求得;法二:運用基本不等式構造,可得最值;法三:運用柯西不等式得:,可得最值;(2)由絕對值不等式得,,又,可得證.【詳解】(1),法一:,,的最小值為,此時;法二:,,即的最小值為,此時;法三:由柯西不等式得:,,即的最小值為,此時;(2),,又,.本題考查運用基本不等式,柯西不等式,絕對值不等式進行不等式的證明和求解函數的最值,屬于中檔題.20.(1)(2)【解析】
(1)先消去參數,化為直角坐標方程,再利用求解.(2)直線與曲線方程聯立,得,求得弦長和點到直線的距離,再求的面積.【詳解】(1)由已知消去得,則,所以,所以直線的極坐標方程為.(2)由,得,設,兩點對應的極分別為,,則,,所以,又點到直線的距離所以本題主要考查參數方程、直角坐標方程及極坐標方程的轉化和直線與曲線的位置關系,還考查了數形結合的思想和運算求解的能力,屬于中檔題.21.(1);(2)【解析】
(1)直接利用轉換公式,把參數方程,直角坐標方程與極坐標方程進行轉化;(2)利用極坐標方程將轉化為三角函數求解即可.【詳解】(1)因為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三年級信息技術上冊 第7課 裝扮美麗的花園教學設計 粵教版
- 人教版(2024)五年級下冊因數和倍數教學設計
- 人教版(2024)七年級2025年10.1 二元一次方程組的概念教案配套
- 公司員工花名冊
- 人教版一年級音樂上冊教學計劃教案
- 六年級下冊心理健康教育教案-16.學畫思維導圖 蘇科版
- 七年級生物下冊 第四單元 第七章 第一節 分析人類活動對生態系統的影響教學設計2 (新版)新人教版
- 2024吉林鎮賚縣鑫陽新能源有限公司招聘工作人員5人筆試參考題庫附帶答案詳解
- 體育教學設計(單杠和仰臥起坐)
- 人教部編版八年級上冊法不可違教案配套
- 人教版七年級上冊英語單詞表
- 北師大版小學數學三年級下冊 口算1000題(含答案)
- 冬奧會33項應急預案是
- 建筑電工培訓課件
- 中班語言課件《章魚先生賣雨傘》
- 【杜邦分析法企業財務分析文獻綜述】
- 人教版二年級下冊快樂讀書吧課外閱讀測試卷
- 2023年成都市錦江區九年級二診語文試題(含答案)
- 婦產科護理學 簡答題
- 畢業論文工程量計算與造價控制
- 人機料安全等方面應急措施及處理方法
評論
0/150
提交評論