江蘇百校大聯考2025年高三數學試題5月統一考試試題含解析_第1頁
江蘇百校大聯考2025年高三數學試題5月統一考試試題含解析_第2頁
江蘇百校大聯考2025年高三數學試題5月統一考試試題含解析_第3頁
江蘇百校大聯考2025年高三數學試題5月統一考試試題含解析_第4頁
江蘇百校大聯考2025年高三數學試題5月統一考試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇百校大聯考2025年高三數學試題5月統一考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.復數(i是虛數單位)在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.數列滿足:,則數列前項的和為A. B. C. D.3.若集合,,則()A. B. C. D.4.在平面直角坐標系中,將點繞原點逆時針旋轉到點,設直線與軸正半軸所成的最小正角為,則等于()A. B. C. D.5.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長度的集合,則()A.B.C.D.6.已知函數的圖象的一條對稱軸為,將函數的圖象向右平行移動個單位長度后得到函數圖象,則函數的解析式為()A. B.C. D.7.設集合(為實數集),,,則()A. B. C. D.8.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.39.若函數的定義域為M={x|-2≤x≤2},值域為N={y|0≤y≤2},則函數的圖像可能是()A. B. C. D.10.已知函數,存在實數,使得,則的最大值為()A. B. C. D.11.若復數z滿足,則()A. B. C. D.12.已知集合,,則集合子集的個數為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個村子里一共有個人,其中一個人是謠言制造者,他編造了一條謠言并告訴了另一個人,這個人又把謠言告訴了第三個人,如此等等.在每一次謠言傳播時,謠言的接受者都是在其余個村民中隨機挑選的,當謠言傳播次之后,還沒有回到最初的造謠者的概率是_______.14.已知拋物線的焦點為,直線與拋物線相切于點,是上一點(不與重合),若以線段為直徑的圓恰好經過,則點到拋物線頂點的距離的最小值是__________.15.若,則______.16.已知實數滿足(為虛數單位),則的值為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某企業質量檢驗員為了檢測生產線上零件的質量情況,從生產線上隨機抽取了個零件進行測量,根據所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:(1)根據頻率分布直方圖,求這個零件尺寸的中位數(結果精確到);(2)若從這個零件中尺寸位于之外的零件中隨機抽取個,設表示尺寸在上的零件個數,求的分布列及數學期望;(3)已知尺寸在上的零件為一等品,否則為二等品,將這個零件尺寸的樣本頻率視為概率.現對生產線上生產的零件進行成箱包裝出售,每箱個.企業在交付買家之前需要決策是否對每箱的所有零件進行檢驗,已知每個零件的檢驗費用為元.若檢驗,則將檢驗出的二等品更換為一等品;若不檢驗,如果有二等品進入買家手中,企業要向買家對每個二等品支付元的賠償費用.現對一箱零件隨機抽檢了個,結果有個二等品,以整箱檢驗費用與賠償費用之和的期望值作為決策依據,該企業是否對該箱余下的所有零件進行檢驗?請說明理由.18.(12分)已知集合,.(1)若,則;(2)若,求實數的取值范圍.19.(12分)為了解網絡外賣的發展情況,某調查機構從全國各城市中抽取了100個相同等級地城市,分別調查了甲乙兩家網絡外賣平臺(以下簡稱外賣甲、外賣乙)在今年3月的訂單情況,得到外賣甲該月訂單的頻率分布直方圖,外賣乙該月訂單的頻數分布表,如下圖表所示.訂單:(單位:萬件)頻數1223訂單:(單位:萬件)頻數402020102(1)現規定,月訂單不低于13萬件的城市為“業績突出城市”,填寫下面的列聯表,并根據列聯表判斷是否有90%的把握認為“是否為業績突出城市”與“選擇網絡外賣平臺”有關.業績突出城市業績不突出城市總計外賣甲外賣乙總計(2)由頻率分布直方圖可以認為,外賣甲今年3月在全國各城市的訂單數(單位:萬件)近似地服從正態分布,其中近似為樣本平均數(同一組數據用該區間的中點值作代表),的值已求出,約為3.64,現把頻率視為概率,解決下列問題:①從全國各城市中隨機抽取6個城市,記為外賣甲在今年3月訂單數位于區間的城市個數,求的數學期望;②外賣甲決定在今年3月訂單數低于7萬件的城市開展“訂外賣,搶紅包”的營銷活動來提升業績,據統計,開展此活動后城市每月外賣訂單數將提高到平均每月9萬件的水平,現從全國各月訂單數不超過7萬件的城市中采用分層抽樣的方法選出100個城市不開展營銷活動,若每按一件外賣訂單平均可獲純利潤5元,但每件外賣平均需送出紅包2元,則外賣甲在這100個城市中開展營銷活動將比不開展營銷活動每月多盈利多少萬元?附:①參考公式:,其中.參考數據:0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,則,.20.(12分)已知數列的前n項和,是等差數列,且.(Ⅰ)求數列的通項公式;(Ⅱ)令.求數列的前n項和.21.(12分)已知函數存在一個極大值點和一個極小值點.(1)求實數a的取值范圍;(2)若函數的極大值點和極小值點分別為和,且,求實數a的取值范圍.(e是自然對數的底數)22.(10分)設函數,其中.(Ⅰ)當為偶函數時,求函數的極值;(Ⅱ)若函數在區間上有兩個零點,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

利用復數的四則運算以及幾何意義即可求解.【詳解】解:,則復數(i是虛數單位)在復平面內對應的點的坐標為:,位于第二象限.故選:B.本題考查了復數的四則運算以及復數的幾何意義,屬于基礎題.2.A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據式子的結構特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現丟項或多項的問題,導致計算結果錯誤.3.A【解析】

用轉化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關鍵.屬于基礎題.4.A【解析】

設直線直線與軸正半軸所成的最小正角為,由任意角的三角函數的定義可以求得的值,依題有,則,利用誘導公式即可得到答案.【詳解】如圖,設直線直線與軸正半軸所成的最小正角為因為點在角的終邊上,所以依題有,則,所以,故選:A本題考查三角函數的定義及誘導公式,屬于基礎題.5.D【解析】

如圖所示:在邊長為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.本題考查了三視圖,元素和集合的關系,意在考查學生的空間想象能力和計算能力.6.C【解析】

根據輔助角公式化簡三角函數式,結合為函數的一條對稱軸可求得,代入輔助角公式得的解析式.根據三角函數圖像平移變換,即可求得函數的解析式.【詳解】函數,由輔助角公式化簡可得,因為為函數圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數的圖象向右平行移動個單位長度可得,則,故選:C.本題考查了輔助角化簡三角函數式的應用,三角函數對稱軸的應用,三角函數圖像平移變換的應用,屬于中檔題.7.A【解析】

根據集合交集與補集運算,即可求得.【詳解】集合,,所以所以故選:A本題考查了集合交集與補集的混合運算,屬于基礎題.8.A【解析】

由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎.9.B【解析】因為對A不符合定義域當中的每一個元素都有象,即可排除;對B滿足函數定義,故符合;對C出現了定義域當中的一個元素對應值域當中的兩個元素的情況,不符合函數的定義,從而可以否定;對D因為值域當中有的元素沒有原象,故可否定.故選B.10.A【解析】

畫出分段函數圖像,可得,由于,構造函數,利用導數研究單調性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A本題考查了導數在函數性質探究中的應用,考查了學生數形結合,轉化劃歸,綜合分析,數學運算的能力,屬于較難題.11.D【解析】

先化簡得再求得解.【詳解】所以.故選:D本題主要考查復數的運算和模的計算,意在考查學生對這些知識的理解掌握水平.12.B【解析】

首先求出,再根據含有個元素的集合有個子集,計算可得.【詳解】解:,,,子集的個數為.故選:.考查列舉法、描述法的定義,以及交集的運算,集合子集個數的計算公式,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用相互獨立事件概率的乘法公式即可求解.【詳解】第1次傳播,謠言一定不會回到最初的人;從第2次傳播開始,每1次謠言傳播,第一個制造謠言的人被選中的概率都是,沒有被選中的概率是.次傳播是相互獨立的,故為故答案為:本題考查了相互獨立事件概率的乘法公式,考查了考生的分析能力,屬于基礎題.14.【解析】

根據拋物線,不妨設,取,通過求導得,,再根據以線段為直徑的圓恰好經過,則,得到,兩式聯立,求得點N的軌跡,再求解最值.【詳解】因為拋物線,不妨設,取,所以,即,所以,因為以線段為直徑的圓恰好經過,所以,所以,所以,由,解得,所以點在直線上,所以當時,最小,最小值為.故答案為:2本題主要考查直線與拋物線的位置關系直線的交軌問題,還考查了運算求解的能力,屬于中檔題.15.【解析】

直接利用關系式求出函數的被積函數的原函數,進一步求出的值.【詳解】解:若,則,即,所以.故答案為:.本題考查的知識要點:定積分的應用,被積函數的原函數的求法,主要考查學生的運算能力和轉換能力及思維能力,屬于基礎題.16.【解析】

由虛數單位的性質結合復數相等的條件列式求得,的值,則答案可求.【詳解】解:由,,,所以,得,..故答案為:.本題考查復數代數形式的乘除運算,考查虛數單位的性質,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)分布列見詳解,期望為;(3)余下所有零件不用檢驗,理由見詳解.【解析】

(1)計算的頻率,并且與進行比較,判斷中位數落在的區間,然后根據頻率的計算方法,可得結果.(2)計算位于之外的零件中隨機抽取個的總數,寫出所有可能取值,并計算相對應的概率,列出分布列,計算期望,可得結果.(3)計算整箱的費用,根據余下零件個數服從二項分布,可得余下零件個數的期望值,然后計算整箱檢驗費用與賠償費用之和的期望值,進行比較,可得結果.【詳解】(1)尺寸在的頻率:尺寸在的頻率:且所以可知尺寸的中位數落在假設尺寸中位數為所以所以這個零件尺寸的中位數(2)尺寸在的個數為尺寸在的個數為的所有可能取值為1,2,3,4則,,所以的分布列為(3)二等品的概率為如果對余下的零件進行檢驗則整箱的檢驗費用為(元)余下二等品的個數期望值為如果不對余下的零件進行檢驗,整箱檢驗費用與賠償費用之和的期望值為(元)所以,所以可以不對余下的零件進行檢驗.本題考查頻率分布直方圖的應用,掌握中位數,平均數,眾數的計算方法,中位數的理解應該從中位數開始左右兩邊的頻率各為0.5,考驗分析能力以及數據處理,屬中檔題.18.(1);(2)【解析】

(1)將代入可得集合B,解對數不等式可得集合A,由并集運算即可得解.(2)由可知B為A的子集,即;當符合題意,當B不為空集時,由不等式關系即可求得的取值范圍.【詳解】(1)若,則,依題意,故;(2)因為,故;若,即時,,符合題意;若,即時,,解得;綜上所述,實數的取值范圍為.本題考查了集合的并集運算,由集合的包含關系求參數的取值范圍,注意討論集合是否為空集的情況,屬于基礎題.19.(1)見解析,有90%的把握認為“是否為業績突出城市”與“選擇網絡外賣平臺”有關.(2)①4.911②100萬元.【解析】

(1)根據頻率分布直方圖與頻率分布表,易得兩個外賣平臺中月訂單不低于13萬件的城市數量,即可完善列聯表.通過計算的觀測值,即可結合臨界值作出判斷.(2)①先根據所給數據求得樣本平均值,根據所給今年3月訂單數區間,并由及求得,.結合正態分布曲線性質可求得,再由二項分布的數學期望求法求解.②訂單數低于7萬件的城市有和兩組,根據分層抽樣的性質可確定各組抽取樣本數.分別計算出開展營銷活動與不開展營銷活動的利潤,比較即可得解.【詳解】(1)對于外賣甲:月訂單不低于13萬件的城市數量為,對于外賣乙:月訂單不低于13萬件的城市數量為.由以上數據完善列聯表如下圖,業績突出城市業績不突出城市總計外賣甲4060100外賣乙5248100總計92108200且的觀測值為,∴有90%的把握認為“是否為業績突出城市”與“選擇網絡外賣平臺”有關.(2)①樣本平均數,故==,,的數學期望,②由分層抽樣知,則100個城市中每月訂單數在區間內的有(個),每月訂單數在區間內的有(個),若不開展營銷活動,則一個月的利潤為(萬元),若開展營銷活動,則一個月的利潤為(萬元),這100個城市中開展營銷活動比不開展每月多盈利100萬元.本題考查了頻率分布直方圖與頻率分布表的應用,完善列聯表并計算的觀測值作出判斷,分層抽樣的簡單應用,綜合性強,屬于中檔題.20.(Ⅰ);(Ⅱ)【解析】試題分析:(1)先由公式求出數列的通項公式;進而列方程組求數列的首項與公差,得數列的通項公式;(2)由(1)可得,再利用“錯位相減法”求數列的前項和.試題解析:(1)由題意知當時,,當時,,所以.設數列的公差為,由,即,可解得,所以.(2)由(1)知,又,得,,兩式作差,得所以.考點1、待定系數法求等差數列的通項公式;2、利用“錯位相減法”求數列的前項和.【易錯點晴】本題主要考查待定系數法求等差數列的通項公式、利用“錯位相減法”求數列的前項和,屬于難題.“錯位相減法”求數列的前項和是重點也是難點,利用“錯位相減法”求數列的和應注意以下幾點:①掌握運用“錯位相減法”求數列的和的條件(一個等差數列與一個等比數列的積);②相減時注意最后一項的符號;③求和時注意項數別出錯;④最后結果一定不能忘記等式兩邊同時除以.21.(1);(2).【解析】

(1)首先對函數求導,根據函數存在一個極大值點和一個極小值點求出a的取值范圍;(2)首先求出的值,再根據求出實數a的取值范圍.【詳解】(1)函數的定義域為是,,若有兩個極值點,則方程一定有兩個不等的正根,設為和,且,所以解得,此時,當時,,當時,,當時,,故是極大值點,是極小值點,故實數a的取值范圍是;(2)由(1)知,,,則,,,由,得,即,令,考慮到,所以可化為,而,所以在上為增函數,由,得,故實數a的取值范圍是.本題主要考查了利用導數研究函數的極值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論