2025屆上海市七校聯考高三5月高考模擬題(一)數學試題_第1頁
2025屆上海市七校聯考高三5月高考模擬題(一)數學試題_第2頁
2025屆上海市七校聯考高三5月高考模擬題(一)數學試題_第3頁
2025屆上海市七校聯考高三5月高考模擬題(一)數學試題_第4頁
2025屆上海市七校聯考高三5月高考模擬題(一)數學試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆上海市七校聯考高三5月高考模擬題(一)數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.網格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.42.復數,若復數在復平面內對應的點關于虛軸對稱,則等于()A. B. C. D.3.函數的圖象大致是()A. B.C. D.4.已知數列為等差數列,為其前項和,,則()A. B. C. D.5.已知邊長為4的菱形,,為的中點,為平面內一點,若,則()A.16 B.14 C.12 D.86.已知函數,,若方程恰有三個不相等的實根,則的取值范圍為()A. B.C. D.7.已知F為拋物線y2=4x的焦點,過點F且斜率為1的直線交拋物線于A,B兩點,則||FA|﹣|FB||的值等于()A. B.8 C. D.48.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且9.設i是虛數單位,若復數是純虛數,則a的值為()A. B.3 C.1 D.10.等差數列中,,,則數列前6項和為()A.18 B.24 C.36 D.7211.已知,,,則()A. B.C. D.12.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復數,其中為虛數單位,若復數為純虛數,則實數的值是__.14.在中,已知,則的最小值是________.15.已知橢圓:的左、右焦點分別為,,如圖是過且垂直于長軸的弦,則的內切圓方程是________.16.3張獎券分別標有特等獎、一等獎和二等獎.甲、乙兩人同時各抽取1張獎券,兩人都未抽得特等獎的概率是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,函數.(1)若,求的單調遞增區間;(2)若,求的值.18.(12分)已知函數f(x)=ex-x2-kx(其中e為自然對數的底,k為常數)有一個極大值點和一個極小值點.(1)求實數k的取值范圍;(2)證明:f(x)的極大值不小于1.19.(12分)已知在多面體中,平面平面,且四邊形為正方形,且//,,,點,分別是,的中點.(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.20.(12分)數列滿足.(1)求數列的通項公式;(2)設,為的前n項和,求證:.21.(12分)的內角,,的對邊分別為,,,已知的面積為.(1)求;(2)若,,求的周長.22.(10分)如圖,空間幾何體中,是邊長為2的等邊三角形,,,,平面平面,且平面平面,為中點.(1)證明:平面;(2)求二面角平面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

采用數形結合,根據三視圖可知該幾何體為三棱錐,然后根據錐體體積公式,可得結果.【詳解】根據三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點睛】本題考查根據三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據三視圖刪掉沒有的點與線,屬中檔題.2、A【解析】

先通過復數在復平面內對應的點關于虛軸對稱,得到,再利用復數的除法求解.【詳解】因為復數在復平面內對應的點關于虛軸對稱,且復數,所以所以故選:A【點睛】本題主要考查復數的基本運算和幾何意義,屬于基礎題.3、A【解析】

根據復合函數的單調性,同增異減以及采用排除法,可得結果.【詳解】當時,,由在遞增,所以在遞增又是增函數,所以在遞增,故排除B、C當時,若,則所以在遞減,而是增函數所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數的大致圖象的判斷,關鍵在于對復合函數單調性的理解,記住常用的結論:增+增=增,增-減=增,減+減=減,復合函數單調性同增異減,屬中檔題.4、B【解析】

利用等差數列的性質求出的值,然后利用等差數列求和公式以及等差中項的性質可求出的值.【詳解】由等差數列的性質可得,.故選:B.【點睛】本題考查等差數列基本性質的應用,同時也考查了等差數列求和,考查計算能力,屬于基礎題.5、B【解析】

取中點,可確定;根據平面向量線性運算和數量積的運算法則可求得,利用可求得結果.【詳解】取中點,連接,,,即.,,,則.故選:.【點睛】本題考查平面向量數量積的求解問題,涉及到平面向量的線性運算,關鍵是能夠將所求向量進行拆解,進而利用平面向量數量積的運算性質進行求解.6、B【解析】

由題意可將方程轉化為,令,,進而將方程轉化為,即或,再利用的單調性與最值即可得到結論.【詳解】由題意知方程在上恰有三個不相等的實根,即,①.因為,①式兩邊同除以,得.所以方程有三個不等的正實根.記,,則上述方程轉化為.即,所以或.因為,當時,,所以在,上單調遞增,且時,.當時,,在上單調遞減,且時,.所以當時,取最大值,當,有一根.所以恰有兩個不相等的實根,所以.故選:B.【點睛】本題考查了函數與方程的關系,考查函數的單調性與最值,轉化的數學思想,屬于中檔題.7、C【解析】

將直線方程代入拋物線方程,根據根與系數的關系和拋物線的定義即可得出的值.【詳解】F(1,0),故直線AB的方程為y=x﹣1,聯立方程組,可得x2﹣6x+1=0,設A(x1,y1),B(x2,y2),由根與系數的關系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.【點睛】本題考查了拋物線的定義,直線與拋物線的位置關系,屬于中檔題.8、D【解析】

首先把三視圖轉換為幾何體,根據三視圖的長度,進一步求出個各棱長.【詳解】根據幾何體的三視圖轉換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點睛】本題考查三視圖和幾何體之間的轉換,主要考查運算能力和轉換能力及思維能力,屬于基礎題.9、D【解析】

整理復數為的形式,由復數為純虛數可知實部為0,虛部不為0,即可求解.【詳解】由題,,因為純虛數,所以,則,故選:D【點睛】本題考查已知復數的類型求參數范圍,考查復數的除法運算.10、C【解析】

由等差數列的性質可得,根據等差數列的前項和公式可得結果.【詳解】∵等差數列中,,∴,即,∴,故選C.【點睛】本題主要考查了等差數列的性質以及等差數列的前項和公式的應用,屬于基礎題.11、C【解析】

利用二倍角公式,和同角三角函數的商數關系式,化簡可得,即可求得結果.【詳解】,所以,即.故選:C.【點睛】本題考查三角恒等變換中二倍角公式的應用和弦化切化簡三角函數,難度較易.12、D【解析】

先根據向量坐標運算求出和,進而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點睛】此題考查向量的坐標運算,引入新定義,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

由題,得,然后根據純虛數的定義,即可得到本題答案.【詳解】由題,得,又復數為純虛數,所以,解得.故答案為:2【點睛】本題主要考查純虛數定義的應用,屬基礎題.14、【解析】分析:可先用向量的數量積公式將原式變形為:,然后再結合余弦定理整理為,再由cosC的余弦定理得到a,b的關系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當a=b時取到等號,故cosC的最小值為.點睛:考查向量的數量積、余弦定理、基本不等式的綜合運用,能正確轉化是解題關鍵.屬于中檔題.15、【解析】

利用公式計算出,其中為的周長,為內切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標.【詳解】由已知,,,,設內切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內切圓方程為.故答案為:.【點睛】本題考查橢圓中三角形內切圓的方程問題,涉及到橢圓焦點三角形、橢圓的定義等知識,考查學生的運算能力,是一道中檔題.16、【解析】

利用排列組合公式進行計算,再利用古典概型公式求出不是特等獎的兩張的概率即可.【詳解】解:3張獎券分別標有特等獎、一等獎和二等獎,甲、乙兩人同時各抽取1張獎券,則兩人同時抽取兩張共有:種排法排除特等獎外兩人選兩張共有:種排法.故兩人都未抽得特等獎的概率是:故答案為:【點睛】本題主要考查古典概型的概率公式的應用,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用三角恒等變換思想化簡函數的解析式為,然后解不等式,可得出函數的單調遞增區間;(2)由得出,并求出的值,利用兩角差的正弦公式可求出的值.【詳解】(1)當時,,由,得,因此,函數的單調遞增區間為;(2),,,,,,.【點睛】本題主要考查三角函數的圖象和性質,利用三角函數公式將函數進行化簡是解決本題的關鍵,屬中等題.18、(1);(2)見解析【解析】

(1)求出,記,問題轉化為方程有兩個不同解,求導,研究極值即可得結果;(2)由(1)知,在區間上存在極大值點,且,則可求出極大值,記,求導,求單調性,求出極值即可.【詳解】(1),由,記,,由,且時,,單調遞減,,時,,單調遞增,,由題意,方程有兩個不同解,所以;(2)解法一:由(1)知,在區間上存在極大值點,且,所以的極大值為,記,則,因為,所以,所以時,,單調遞減,時,,單調遞增,所以,即函數的極大值不小于1.解法二:由(1)知,在區間上存在極大值點,且,所以的極大值為,因為,,所以.即函數的極大值不小于1.【點睛】本題考查導數研究函數的單調性,極值,考查學生綜合分析能力與轉化能力,是一道中檔題.19、(1)證明見解析;(2).【解析】

(1)構造直線所在平面,由面面平行推證線面平行;(2)以為坐標原點,建立空間直角坐標系,分別求出兩個平面的法向量,再由法向量之間的夾角,求得二面角的余弦值.【詳解】(1)過點交于點,連接,如下圖所示:因為平面平面,且交線為,又四邊形為正方形,故可得,故可得平面,又平面,故可得.在三角形中,因為為中點,,故可得//,為中點;又因為四邊形為等腰梯形,是的中點,故可得//;又,且平面,平面,故面面,又因為平面,故面.即證.(2)連接,,作交于點,由(1)可知平面,又因為//,故可得平面,則;又因為//,,故可得即,,兩兩垂直,則分別以,,為,,軸建立空間直角坐標系,則,,,,,,設面的法向量為,則,,則,可取,設平面的法向量為,則,,則,可取,可知平面與平面所成的銳二面角的余弦值為.【點睛】本題考查由面面平行推證線面平行,涉及用向量法求二面角的大小,屬綜合基礎題.20、(1)(2)證明見解析【解析】

(1)利用與的關系即可求解.(2)利用裂項求和法即可求解.【詳解】解析:(1)當時,;當,,可得,又∵當時也成立,;(2),【點睛】本題主要考查了與的關系、裂項求和法,屬于基礎題.21、(1)(2)【解析】

(1)根據三角形面積公式和正弦定理可得答案;(2)根據兩角余弦公式可得,即可求出,再根據正弦定理可得,根據余弦定理即可求出,問題得以解決.【詳解】(1)由三角形的面積公式可得,,由正弦定理可得,,;(2),,,,,則由,可得:,由,可得:,,可得:,經檢驗符合題意,三角形的周長.(實際上可解得,符合三邊關系).【點睛】本題考查了三角形的面積公式、兩角和的余弦公式、誘導公式,考查正弦定理,余弦定理在解三角形中的綜合應用,考查了學生的運算能力,考查了轉化思想,屬于中檔題.22、(1)證明見解析(2)【解析】

(1)分別取,的中點,,連接,,,,,要證明平面,只需證明面∥面即可.(2)以點為原點,以為軸,以為軸,以為軸,建立空間直角坐標系,分別計算面的法向量,面的法向量可取,并判斷二面角為銳

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論