




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江蘇省宿遷市沭陽中學高三下學期4月教學質量測評數學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數為自然對數的底數)在區間上不是單調函數,則實數的取值范圍是()A. B. C. D.2.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件3.某幾何體的三視圖如圖所示,若側視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.4.()A. B. C. D.5.已知雙曲線的左,右焦點分別為、,過的直線l交雙曲線的右支于點P,以雙曲線的實軸為直徑的圓與直線l相切,切點為H,若,則雙曲線C的離心率為()A. B. C. D.6.已知定義在上的函數,若函數為偶函數,且對任意,,都有,若,則實數的取值范圍是()A. B. C. D.7.設,命題“存在,使方程有實根”的否定是()A.任意,使方程無實根B.任意,使方程有實根C.存在,使方程無實根D.存在,使方程有實根8.已知,,且是的充分不必要條件,則的取值范圍是()A. B. C. D.9.設遞增的等比數列的前n項和為,已知,,則()A.9 B.27 C.81 D.10.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.11.已知,若對任意,關于x的不等式(e為自然對數的底數)至少有2個正整數解,則實數a的取值范圍是()A. B. C. D.12.設i為數單位,為z的共軛復數,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,雙曲線的右準線與漸近線的交點在拋物線上,則實數的值為________.14.《易經》是中國傳統文化中的精髓,如圖是易經八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽線,四根陰線的概率為_______.15.直線是曲線的一條切線為自然對數的底數),則實數__________.16.在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列的前n項和為,且n、、成等差數列,.(1)證明數列是等比數列,并求數列的通項公式;(2)若數列中去掉數列的項后余下的項按原順序組成數列,求的值.18.(12分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.19.(12分)我們稱n()元有序實數組(,,…,)為n維向量,為該向量的范數.已知n維向量,其中,,2,…,n.記范數為奇數的n維向量的個數為,這個向量的范數之和為.(1)求和的值;(2)當n為偶數時,求,(用n表示).20.(12分)求下列函數的導數:(1)(2)21.(12分)設函數(其中),且函數在處的切線與直線平行.(1)求的值;(2)若函數,求證:恒成立.22.(10分)“綠水青山就是金山銀山”,為推廣生態環境保護意識,高二一班組織了環境保護興趣小組,分為兩組,討論學習.甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現要從這人的兩個興趣小組中抽出人參加學校的環保知識競賽.(1)設事件為“選出的這個人中要求兩個男生兩個女生,而且這兩個男生必須來自不同的組”,求事件發生的概率;(2)用表示抽取的人中乙組女生的人數,求隨機變量的分布列和期望
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
求得的導函數,由此構造函數,根據題意可知在上有變號零點.由此令,利用分離常數法結合換元法,求得的取值范圍.【詳解】,設,要使在區間上不是單調函數,即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B【點睛】本小題主要考查利用導數研究函數的單調性,考查方程零點問題的求解策略,考查化歸與轉化的數學思想方法,屬于中檔題.2.C【解析】分析:從兩個方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當三角形是鈍角三角形時,也推不出成立,從而必要性也不滿足,從而選出正確的結果.詳解:由題意可得,在中,因為,所以,因為,所以,,結合三角形內角的條件,故A,B同為銳角,因為,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點睛:該題考查的是有關充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價轉化,余弦的和角公式,誘導公式等,需要明確對應此類問題的解題步驟,以及三角形形狀對應的特征.3.C【解析】
由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.4.B【解析】
利用復數代數形式的乘除運算化簡得答案.【詳解】.故選B.【點睛】本題考查復數代數形式的乘除運算,考查了復數的基本概念,是基礎題.5.A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.【點睛】本題考查雙曲線離心率的計算問題,處理雙曲線離心率問題的關鍵是建立三者間的關系,本題是一道中檔題.6.A【解析】
根據題意,分析可得函數的圖象關于對稱且在上為減函數,則不等式等價于,解得的取值范圍,即可得答案.【詳解】解:因為函數為偶函數,所以函數的圖象關于對稱,因為對任意,,都有,所以函數在上為減函數,則,解得:.即實數的取值范圍是.故選:A.【點睛】本題考查函數的對稱性與單調性的綜合應用,涉及不等式的解法,屬于綜合題.7.A【解析】
只需將“存在”改成“任意”,有實根改成無實根即可.【詳解】由特稱命題的否定是全稱命題,知“存在,使方程有實根”的否定是“任意,使方程無實根”.故選:A【點睛】本題考查含有一個量詞的命題的否定,此類問題要注意在兩個方面作出變化:1.量詞,2.結論,是一道基礎題.8.D【解析】
“是的充分不必要條件”等價于“是的充分不必要條件”,即中變量取值的集合是中變量取值集合的真子集.【詳解】由題意知:可化簡為,,所以中變量取值的集合是中變量取值集合的真子集,所以.【點睛】利用原命題與其逆否命題的等價性,對是的充分不必要條件進行命題轉換,使問題易于求解.9.A【解析】
根據兩個已知條件求出數列的公比和首項,即得的值.【詳解】設等比數列的公比為q.由,得,解得或.因為.且數列遞增,所以.又,解得,故.故選:A【點睛】本題主要考查等比數列的通項和求和公式,意在考查學生對這些知識的理解掌握水平.10.C【解析】
由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因為且三棱柱為直三棱柱,∴∴面,∴,又,,∴,∴,解得.故選C【點睛】考查直三棱柱的定義,線面垂直的性質,考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎題.11.B【解析】
構造函數(),求導可得在上單調遞增,則,問題轉化為,即至少有2個正整數解,構造函數,,通過導數研究單調性,由可知,要使得至少有2個正整數解,只需即可,代入可求得結果.【詳解】構造函數(),則(),所以在上單調遞增,所以,故問題轉化為至少存在兩個正整數x,使得成立,設,,則,當時,單調遞增;當時,單調遞增.,整理得.故選:B.【點睛】本題考查導數在判斷函數單調性中的應用,考查不等式成立問題中求解參數問題,考查學生分析問題的能力和邏輯推理能力,難度較難.12.A【解析】
由復數的除法求出,然后計算.【詳解】,∴.故選:A.【點睛】本題考查復數的乘除法運算,考查共軛復數的概念,掌握復數的運算法則是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
求出雙曲線的右準線與漸近線的交點坐標,并將該交點代入拋物線的方程,即可求出實數的方程.【詳解】雙曲線的半焦距為,則雙曲線的右準線方程為,漸近線方程為,所以,該雙曲線右準線與漸近線的交點為.由題意得,解得.故答案為:.【點睛】本題考查利用拋物線上的點求參數,涉及到雙曲線的準線與漸近線方程的應用,考查計算能力,屬于中等題.14.【解析】
觀察八卦中陰線和陽線的情況為3線全為陽線或全為陰線各一個,還有6個是1陰2陽和1陽2陰各3個。抽取的兩卦中共2陽4陰的所有可能情況是一卦全陰、另一卦2陽1陰,或兩卦全是1陽2陰。【詳解】八卦中陰線和陽線的情況為3線全為陽線的一個,全為陰線的一個,1陰2陽的3個,1陽2陰的3個。抽取的兩卦中共2陽4陰的所有可能情況是一卦全陰、另一卦2陽1陰,或兩卦全是1陽2陰。∴從8個卦中任取2卦,共有種可能,兩卦中共2陽4陰的情況有,所求概率為。故答案為:。【點睛】本題考查古典概型,解題關鍵是確定基本事件的個數。本題不能受八卦影響,我們關心的是八卦中陰線和陽線的條數,這樣才能正確地確定基本事件的個數。15.【解析】
根據切線的斜率為,利用導數列方程,由此求得切點的坐標,進而求得切線方程,通過對比系數求得的值.【詳解】,則,所以切點為,故切線為,即,故.故答案為:【點睛】本小題主要考查利用導數求解曲線的切線方程有關問題,屬于基礎題.16.①②④【解析】
①∵,∴平面
,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據線面垂直的判定和性質或三垂線定理,可判斷命題②;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,運用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關于面對稱的點,使得點在平面內,根據對稱性和兩點之間線段最短,可求得當點在點時,在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面
,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;
②在直線上運動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,設正方體的棱長為2.則:,,所以,設面的法向量為,則,即,令,則,設面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關于面對稱的點,使得點在平面內,則,所以,當點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設點的坐標為,,,所以,所以,又所以,所以,,,故④正確.
故答案為:①②④.【點睛】本題考查空間里的線線,線面,面面關系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運用對稱的思想,兩點之間線段最短進行求解,屬于難度題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析,;(2)11202.【解析】
(1)由n,,成等差數列,可得,,兩式相減,由等比數列的定義可得是等比數列,可求數列的通項公式;(2)由(1)中的可求出,根據和求出數列,中的公共項,分組求和,結合等比數列和等差數列的求和公式,可得答案.【詳解】(1)證明:因為n,,成等差數列,所以,①所以.②①-②,得,所以.又當時,,所以,所以,故數列是首項為2,公比為2的等比數列,所以,即.(2)根據(1)求解知,,,所以,所以數列是以1為首項,2為公差的等差數列.又因為,,,,,,,,,,,所以.【點睛】本題考查等比數列的定義,考查分組求和,屬于中檔題.18.(1)證明見解析(2)【解析】
(1)由底面為菱形,得,再由底面,可得,結合線面垂直的判定可得平面;(2)以點為坐標原點,以所在直線及過點且垂直于平面的直線分別為軸建立空間直角坐標系,分別求出平面與平面的一個法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.【詳解】(1)證明:底面為菱形,,底面,平面,又,平面,平面;(2)解:,,為等邊三角形,.底面,是直線與平面所成的角為,在中,由,解得.如圖,以點為坐標原點,以所在直線及過點且垂直于平面的直線分別為軸建立空間直角坐標系.則,,,,.,,,.設平面與平面的一個法向量分別為,.由,取,得;由,取,得..平面與平面所成銳二面角的余弦值為.【點睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓練了利用空間向量求解空間角,屬于中檔題.19.(1),.(2),【解析】
(1)利用枚舉法將范數為奇數的二元有序實數對都寫出來,再做和;(2)用組合數表示和,再由公式或將組合數進行化簡,得出最終結果.【詳解】解:(1)范數為奇數的二元有序實數對有:,,,,它們的范數依次為1,1,1,1,故,.(2)當n為偶數時,在向量的n個坐標中,要使得范數為奇數,則0的個數一定是奇數,所以可按照含0個數為:1,3,…,進行討論:的n個坐標中含1個0,其余坐標為1或,共有個,每
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 七年級地理下冊 11《中國在世界中》教學設計1 魯教版五四制
- 發展對象培訓班開班儀式
- 人教版四年級數學下冊集體備課教案
- 凍干粉燈檢培訓
- 工程部培訓先進經驗分享
- 九年級英語上冊 Unit 4 I used to be afraid of the dark Section B(3a-Self Check)教學設計(新版)人教新目標版
- 部門人品培訓
- 人教部編版八年級歷史上冊第6課戊戌變法教學設計
- 財稅銷售培訓
- 寫作:學寫故事(教學設計)八年級語文下冊同步備課系列(統編版)
- 《燭之武退秦師》教學設計 統編版高中語文必修下冊
- RFJ 011-2021 人民防空工程復合材料(玻璃纖維增強塑料)防護設備選用圖集(試行)
- 《公務員法》專題講座
- 軟件工程介紹
- 船用起重機作業安全操作規程培訓課件
- 河南省高等職業教育單招財經類職業技能測試考試題庫(含答案)
- 挺膺擔當主題團課
- 項目實施方法論課件
- 景區托管規劃方案模板
- 煤礦安全監控系統施工方案
- 2022.06英語六級真題第1套
評論
0/150
提交評論