




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省濰坊市重點(diǎn)中學(xué)2025屆高三下學(xué)期適應(yīng)性訓(xùn)練(四)數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)的圖象經(jīng)過點(diǎn),則函數(shù)圖象的一條對稱軸的方程可以為()A. B. C. D.2.在三棱錐中,,且分別是棱,的中點(diǎn),下面四個結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④3.已知橢圓內(nèi)有一條以點(diǎn)為中點(diǎn)的弦,則直線的方程為()A. B.C. D.4.已知函數(shù)滿足,當(dāng)時,,則()A.或 B.或C.或 D.或5.已知集合,,則為()A. B. C. D.6.已知(為虛數(shù)單位,為的共軛復(fù)數(shù)),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在().A.第一象限 B.第二象限 C.第三象限 D.第四象限7.?dāng)?shù)列滿足:,則數(shù)列前項的和為A. B. C. D.8.將函數(shù)的圖象先向右平移個單位長度,在把所得函數(shù)圖象的橫坐標(biāo)變?yōu)樵瓉淼谋叮v坐標(biāo)不變,得到函數(shù)的圖象,若函數(shù)在上沒有零點(diǎn),則的取值范圍是()A. B.C. D.9.已知等差數(shù)列的公差為,前項和為,,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,若對任意的恒成立,則實(shí)數(shù)().A.6 B.5 C.4 D.310.如果實(shí)數(shù)滿足條件,那么的最大值為()A. B. C. D.11.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.12.若均為任意實(shí)數(shù),且,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在△ABC中,AB=AC=2,,,AE的延長線交BC邊于點(diǎn)F,若,則____.14.直線xsinα+y+2=0的傾斜角的取值范圍是________________.15.已知函數(shù),則________;滿足的的取值范圍為________.16.已知雙曲線(a>0,b>0)的一條漸近線方程為,則該雙曲線的離心率為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓E:()的離心率為,且短軸的一個端點(diǎn)B與兩焦點(diǎn)A,C組成的三角形面積為.(Ⅰ)求橢圓E的方程;(Ⅱ)若點(diǎn)P為橢圓E上的一點(diǎn),過點(diǎn)P作橢圓E的切線交圓O:于不同的兩點(diǎn)M,N(其中M在N的右側(cè)),求四邊形面積的最大值.18.(12分)已知函數(shù),曲線在點(diǎn)處的切線在y軸上的截距為.(1)求a;(2)討論函數(shù)和的單調(diào)性;(3)設(shè),求證:.19.(12分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).20.(12分)設(shè)等差數(shù)列的首項為0,公差為a,;等差數(shù)列的首項為0,公差為b,.由數(shù)列和構(gòu)造數(shù)表M,與數(shù)表;記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數(shù)表中位于第i行第j列的元素為,其中(,,).如:,.(1)設(shè),,請計算,,;(2)設(shè),,試求,的表達(dá)式(用i,j表示),并證明:對于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;(3)設(shè),,對于整數(shù)t,t不屬于數(shù)表M,求t的最大值.21.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點(diǎn).(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.22.(10分)已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由點(diǎn)求得的值,化簡解析式,根據(jù)三角函數(shù)對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解】由題可知.所以令,得令,得故選:B【點(diǎn)睛】本小題主要考查根據(jù)三角函數(shù)圖象上點(diǎn)的坐標(biāo)求參數(shù),考查三角恒等變換,考查三角函數(shù)對稱軸的求法,屬于中檔題.2.D【解析】
①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點(diǎn)為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當(dāng)平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【點(diǎn)睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.3.C【解析】
設(shè),,則,,相減得到,解得答案.【詳解】設(shè),,設(shè)直線斜率為,則,,相減得到:,的中點(diǎn)為,即,故,直線的方程為:.故選:.【點(diǎn)睛】本題考查了橢圓內(nèi)點(diǎn)差法求直線方程,意在考查學(xué)生的計算能力和應(yīng)用能力.4.C【解析】
簡單判斷可知函數(shù)關(guān)于對稱,然后根據(jù)函數(shù)的單調(diào)性,并計算,結(jié)合對稱性,可得結(jié)果.【詳解】由,可知函數(shù)關(guān)于對稱當(dāng)時,,可知在單調(diào)遞增則又函數(shù)關(guān)于對稱,所以且在單調(diào)遞減,所以或,故或所以或故選:C【點(diǎn)睛】本題考查函數(shù)的對稱性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗分析能力,屬中檔題.5.C【解析】
分別求解出集合的具體范圍,由集合的交集運(yùn)算即可求得答案.【詳解】因為集合,,所以故選:C【點(diǎn)睛】本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運(yùn)算,考查基本運(yùn)算能力.6.D【解析】
設(shè),由,得,利用復(fù)數(shù)相等建立方程組即可.【詳解】設(shè),則,所以,解得,故,復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,在第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,涉及到共軛復(fù)數(shù)的定義、復(fù)數(shù)的模等知識,考查學(xué)生的基本計算能力,是一道容易題.7.A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進(jìn)而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項的和為,故選A.點(diǎn)睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導(dǎo)致計算結(jié)果錯誤.8.A【解析】
根據(jù)y=Acos(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,根據(jù)定義域求出的范圍,再利用余弦函數(shù)的圖象和性質(zhì),求得ω的取值范圍.【詳解】函數(shù)的圖象先向右平移個單位長度,可得的圖象,再將圖象上每個點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋?縱坐標(biāo)不變),得到函數(shù)的圖象,∴周期,若函數(shù)在上沒有零點(diǎn),∴,∴,,解得,又,解得,當(dāng)k=0時,解,當(dāng)k=-1時,,可得,.故答案為:A.【點(diǎn)睛】本題考查函數(shù)y=Acos(ωx+φ)的圖象變換及零點(diǎn)問題,此類問題通常采用數(shù)形結(jié)合思想,構(gòu)建不等關(guān)系式,求解可得,屬于較難題.9.C【解析】
若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時的n即可.【詳解】由已知,,又三角形有一個內(nèi)角為,所以,,解得或(舍),故,當(dāng)時,取得最大值,所以.故選:C.【點(diǎn)睛】本題考查等差數(shù)列前n項和的最值問題,考查學(xué)生的計算能力,是一道基礎(chǔ)題.10.B【解析】
解:當(dāng)直線過點(diǎn)時,最大,故選B11.C【解析】
作出三棱錐的實(shí)物圖,然后補(bǔ)成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球為同一個球,然后計算出矩形的外接圓直徑,利用公式可計算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實(shí)物圖如下圖所示:將其補(bǔ)成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點(diǎn)睛】本題考查三棱錐外接球的表面積,解題時要結(jié)合三視圖作出三棱錐的實(shí)物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進(jìn)行計算,考查推理能力與計算能力,屬于中等題.12.D【解析】
該題可以看做是圓上的動點(diǎn)到曲線上的動點(diǎn)的距離的平方的最小值問題,可以轉(zhuǎn)化為圓心到曲線上的動點(diǎn)的距離減去半徑的平方的最值問題,結(jié)合圖形,可以斷定那個點(diǎn)應(yīng)該滿足與圓心的連線與曲線在該點(diǎn)的切線垂直的問題來解決,從而求得切點(diǎn)坐標(biāo),即滿足條件的點(diǎn),代入求得結(jié)果.【詳解】由題意可得,其結(jié)果應(yīng)為曲線上的點(diǎn)與以為圓心,以為半徑的圓上的點(diǎn)的距離的平方的最小值,可以求曲線上的點(diǎn)與圓心的距離的最小值,在曲線上取一點(diǎn),曲線有在點(diǎn)M處的切線的斜率為,從而有,即,整理得,解得,所以點(diǎn)滿足條件,其到圓心的距離為,故其結(jié)果為,故選D.【點(diǎn)睛】本題考查函數(shù)在一點(diǎn)處切線斜率的應(yīng)用,考查圓的程,兩條直線垂直的斜率關(guān)系,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
過點(diǎn)做,可得,,由可得,可得,代入可得答案.【詳解】解:如圖,過點(diǎn)做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.【點(diǎn)睛】本題主要考查平面向量的線性運(yùn)算和平面向量的數(shù)量積,由題意作出是解題的關(guān)鍵.14.【解析】因為sinα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關(guān)系得傾斜角范圍是.答案:15.【解析】
首先由分段函數(shù)的解析式代入求值即可得到,分和兩種情況討論可得;【詳解】解:因為,所以,∵,∴當(dāng)時,滿足題意,∴;當(dāng)時,由,解得.綜合可知:滿足的的取值范圍為.故答案為:;.【點(diǎn)睛】本題考查分段函數(shù)的性質(zhì)的應(yīng)用,分類討論思想,屬于基礎(chǔ)題.16.【解析】
根據(jù)題意,由雙曲線的漸近線方程可得,即a=2b,進(jìn)而由雙曲線的幾何性質(zhì)可得cb,由雙曲線的離心率公式計算可得答案.【詳解】根據(jù)題意,雙曲線的漸近線方程為y=±x,又由該雙曲線的一條漸近線方程為x﹣2y=0,即yx,則有,即a=2b,則cb,則該雙曲線的離心率e;故答案為:.【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是分析a、b之間的關(guān)系,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)結(jié)合已知可得,求出a,b的值,即可得橢圓方程;(Ⅱ)由題意可知,直線的斜率存在,設(shè)出直線方程,聯(lián)立直線方程與橢圓方程,利用判別式等于0可得,聯(lián)立直線方程與圓的方程,結(jié)合根與系數(shù)的關(guān)系求得,利用弦長公式及點(diǎn)到直線的距離公式,求出,得到,整理后利用基本不等式求最值.【詳解】解:(Ⅰ)可得,結(jié)合,解得,,,得橢圓方程;(Ⅱ)易知直線的斜率k存在,設(shè):,由,得,由,得,∵,設(shè)點(diǎn)O到直線:的距離為d,,,由,得,,,∴∴,∴而,,易知,∴,則,四邊形的面積當(dāng)且僅當(dāng),即時取“”.∴四邊形面積的最大值為4.【點(diǎn)睛】本題考查了由求橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,考查了學(xué)生的計算能力,綜合性比較強(qiáng),屬于難題.18.(1)(2)為減函數(shù),為增函數(shù).(3)證明見解析【解析】
(1)求出導(dǎo)函數(shù),求出切線方程,令得切線的縱截距,可得(必須利用函數(shù)的單調(diào)性求解);(2)求函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的正負(fù)確定單調(diào)性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,.不等式,遞增得(),,,,先證,然后同樣放縮得出結(jié)論.【詳解】解:(1)對求導(dǎo),得.因此.又因為,所以曲線在點(diǎn)處的切線方程為,即.由題意,.顯然,適合上式.令,求導(dǎo)得,因此為增函數(shù):故是唯一解.(2)由(1)可知,,因為,所以為減函數(shù).因為,所以為增函數(shù).(3)證明:由,易得.由(2)可知,在上為減函數(shù).因此,當(dāng)時,,即.令,得,即.因此,當(dāng)時,.所以成立.下面證明:.由(2)可知,在上為增函數(shù).因此,當(dāng)時,,即.因此,即.令,得,即.當(dāng)時,.因為,所以,所以.所以,當(dāng)時,.所以,當(dāng)時,成立.綜上所述,當(dāng)時,成立.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查用導(dǎo)數(shù)證明不等式.本題中不等式的證明,考查了轉(zhuǎn)化與化歸的能力,把不等式變形后利用第(2)小題函數(shù)的單調(diào)性得出數(shù)列的不等關(guān)系:,.這是最關(guān)鍵的一步.然后一步一步放縮即可證明.本題屬于困難題.19.(1)的普通方程為.的直角坐標(biāo)方程為(2)(-1,0)或(2,3)【解析】
(1)對直線的參數(shù)方程消參數(shù)即可求得直線的普通方程,對整理并兩邊乘以,結(jié)合,即可求得曲線的直角坐標(biāo)方程。(2)由(1)得:曲線C是以Q(1,1)為圓心,為半徑的圓,設(shè)點(diǎn)P的坐標(biāo)為,由題可得:,利用兩點(diǎn)距離公式列方程即可求解。【詳解】解:(1)由消去參數(shù),得.即直線的普通方程為.因為又,∴曲線的直角坐標(biāo)方程為(2)由知,曲線C是以Q(1,1)為圓心,為半徑的圓設(shè)點(diǎn)P的坐標(biāo)為,則點(diǎn)P到上的點(diǎn)的最短距離為|PQ|即,整理得,解得所以點(diǎn)P的坐標(biāo)為(-1,0)或(2,3)【點(diǎn)睛】本題主要考查了參數(shù)方程化為普通方程及極坐標(biāo)方程化為直角坐標(biāo)方程,還考查了轉(zhuǎn)化思想及兩點(diǎn)距離公式,考查了方程思想及計算能力,屬于中檔題。20.(1)(2)詳見解析(3)29【解析】
(1)將,代入,可求出,,可代入求,,可求結(jié)果.(2)可求,,通過反證法證明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【詳解】(1)由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,則,,得,故.(2)證明:已知.,由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,,.得,,,.所以若,則存在,,使,若,則存在,,,使,因此,對于正整數(shù),考慮集合,,,即,,,,,,.下面證明:集合中至少有一元素是7的倍數(shù).反證法:假設(shè)集合中任何一個元素,都不是7的倍數(shù),則集合中每一元素關(guān)于7的余數(shù)可以為1,2,3,4,5,6,又因為集合中共有7個元素,所以集合中至少存在兩個元素關(guān)于7的余數(shù)相同,不妨設(shè)為,,其中,,.則這兩個元素的差為7的倍數(shù),即,所以,與矛盾,所以假設(shè)不成立,即原命題成立.即集合中至少有一元素是7的倍數(shù),不妨設(shè)該元素為,,,則存在,使,,,即,,,由已證可知,若,則存在,,使,而,所以為負(fù)整數(shù),設(shè),則,且,,,,所以,當(dāng),時,對于整數(shù),若,則成立.(3)下面用反證法證明:若對于整數(shù),,則,假設(shè)命題不成立,即,且.則對于整數(shù),存在,,,,,使成立,整理,得,又因為,,所以且是7的倍數(shù),因為,,所以,所以矛盾,即假設(shè)不成立.所以對于整數(shù),若,則,又由第二問,對于整數(shù),則,所以的最大值,就是集合中元素的最大值,又因為,,,,所以.【點(diǎn)睛】本題考查數(shù)列的綜合應(yīng)用,以及反證法,求最值,屬于難題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 震撼教育三十六計
- 霧化護(hù)理文書書寫規(guī)范
- 跟班培訓(xùn)教師感受與收獲
- 2017資產(chǎn)評估合同范本
- 2024年秋新人教版九年級上冊化學(xué)教學(xué)課件 7.1.2 易燃物和易爆物的安全知識 化學(xué)反應(yīng)中的能量變化
- 人教版七年級英語上冊 Unit 2 This is my sister.第一課時 教案
- 電氣設(shè)備絕緣老化機(jī)理研究價值重點(diǎn)基礎(chǔ)知識點(diǎn)
- 船舶結(jié)構(gòu)專利分析報告專利分析設(shè)計重點(diǎn)基礎(chǔ)知識點(diǎn)
- 安全漏洞修復(fù)合規(guī)性報告費(fèi)用重點(diǎn)基礎(chǔ)知識點(diǎn)
- 項鏈夏輦生課件
- 人教版小學(xué)三年級下期數(shù)學(xué)單元、期中和期末檢測試題
- 康復(fù)輔具適配服務(wù)體系建設(shè)
- 工會驛站驗收
- 【全友家居企業(yè)績效考核問題及其建議(論文8500字)】
- 職業(yè)技術(shù)學(xué)校《云計算運(yùn)維與開發(fā)(初級)》課程標(biāo)準(zhǔn)
- 幼兒園大班數(shù)學(xué)練習(xí)題直接打印
- SAP-TM運(yùn)輸管理模塊操作手冊(S4系統(tǒng))
- 【醫(yī)療管理案例】:以專科化改革促進(jìn)醫(yī)院戰(zhàn)略發(fā)展-中南大學(xué)湘雅醫(yī)院學(xué)科建設(shè)實(shí)踐案例
- 設(shè)計研究與人因工程結(jié)合發(fā)展
- 輸變電工程施工質(zhì)量驗收統(tǒng)一表式附件1:線路工程填寫示例
- 湖北省衛(wèi)生健康委科研項目申報書(上、下冊)
評論
0/150
提交評論