杭州市高級中學2025屆高三下學期階段性測試(四)數學試題_第1頁
杭州市高級中學2025屆高三下學期階段性測試(四)數學試題_第2頁
杭州市高級中學2025屆高三下學期階段性測試(四)數學試題_第3頁
杭州市高級中學2025屆高三下學期階段性測試(四)數學試題_第4頁
杭州市高級中學2025屆高三下學期階段性測試(四)數學試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

杭州市高級中學2025屆高三下學期階段性測試(四)數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某工廠只生產口罩、抽紙和棉簽,如圖是該工廠年至年各產量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產量分別占、、),根據該圖,以下結論一定正確的是()A.年該工廠的棉簽產量最少B.這三年中每年抽紙的產量相差不明顯C.三年累計下來產量最多的是口罩D.口罩的產量逐年增加2.定義在上的偶函數,對,,且,有成立,已知,,,則,,的大小關系為()A. B. C. D.3.設,是兩條不同的直線,,是兩個不同的平面,給出下列四個命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個數為()A. B. C. D.4.函數的圖象大致是()A. B.C. D.5.已知是過拋物線焦點的弦,是原點,則()A.-2 B.-4 C.3 D.-36.已知不重合的平面和直線,則“”的充分不必要條件是()A.內有無數條直線與平行 B.且C.且 D.內的任何直線都與平行7.函數的圖象如圖所示,則它的解析式可能是()A. B.C. D.8.若復數滿足,復數的共軛復數是,則()A.1 B.0 C. D.9.設,則(

)A.10 B.11 C.12 D.1310.定義在上的函數與其導函數的圖象如圖所示,設為坐標原點,、、、四點的橫坐標依次為、、、,則函數的單調遞減區間是()A. B. C. D.11.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統計圖如下面的折線圖.已知目前的月就醫費比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元12.已知雙曲線的兩條漸近線與拋物線的準線分別交于點、,O為坐標原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在三棱錐中,平面,,已知,,則當最大時,三棱錐的體積為__________.14.平面區域的外接圓的方程是____________.15.已知數列的各項均為正數,記為數列的前項和,若,,則______.16.已知正方形邊長為,空間中的動點滿足,,則三棱錐體積的最大值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設點,分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,動直線與橢圓有且僅有一個公共點,點,是直線上的兩點,且,,求四邊形面積的最大值.18.(12分)數列滿足,且.(1)證明:數列是等差數列,并求數列的通項公式;(2)求數列的前項和.19.(12分)已知橢圓的離心率為,且過點.(1)求橢圓C的標準方程;(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設O為坐標原點,試判斷以OD為直徑的圓與點M的位置關系.20.(12分)已知,函數的最小值為1.(1)證明:.(2)若恒成立,求實數的最大值.21.(12分)在直角坐標系中,直線的參數方程為.(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求的普通方程及的直角坐標方程;(2)求曲線上的點到距離的取值范圍.22.(10分)已知函數.(1)求證:當時,;(2)若對任意存在和使成立,求實數的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據該廠每年產量未知可判斷A、B、D選項的正誤,根據每年口罩在該廠的產量中所占的比重最大可判斷C選項的正誤.綜合可得出結論.【詳解】由于該工廠年至年的產量未知,所以,從年至年棉簽產量、抽紙產量以及口罩產量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產的口罩占該工廠的總產量的比重是最大的,則三年累計下來產量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應用,考查數據處理能力,屬于基礎題.2.A【解析】

根據偶函數的性質和單調性即可判斷.【詳解】解:對,,且,有在上遞增因為定義在上的偶函數所以在上遞減又因為,,所以故選:A【點睛】考查偶函數的性質以及單調性的應用,基礎題.3.C【解析】

利用線線、線面、面面相應的判定與性質來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知①正確;當直線平行于平面與平面的交線時也有,,故②錯誤;若,則垂直平面內以及與平面平行的所有直線,故③正確;若,則存在直線且,因為,所以,從而,故④正確.故選:C.【點睛】本題考查空間中線線、線面、面面的位置關系,里面涉及到了相應的判定定理以及性質定理,是一道基礎題.4.B【解析】

根據函數表達式,把分母設為新函數,首先計算函數定義域,然后求導,根據導函數的正負判斷函數單調性,對應函數圖像得到答案.【詳解】設,,則的定義域為.,當,,單增,當,,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數圖像的判斷,用到了換元的思想,簡化了運算,同學們還可以用特殊值法等方法進行判斷.5.D【解析】

設,,設:,聯立方程得到,計算得到答案.【詳解】設,,故.易知直線斜率不為,設:,聯立方程,得到,故,故.故選:.【點睛】本題考查了拋物線中的向量的數量積,設直線為可以簡化運算,是解題的關鍵.6.B【解析】

根據充分不必要條件和直線和平面,平面和平面的位置關系,依次判斷每個選項得到答案.【詳解】A.內有無數條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內的任何直線都與平行,故,若,則內的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關系,意在考查學生的綜合應用能力.7.B【解析】

根據定義域排除,求出的值,可以排除,考慮排除.【詳解】根據函數圖象得定義域為,所以不合題意;選項,計算,不符合函數圖象;對于選項,與函數圖象不一致;選項符合函數圖象特征.故選:B【點睛】此題考查根據函數圖象選擇合適的解析式,主要利用函數性質分析,常見方法為排除法.8.C【解析】

根據復數代數形式的運算法則求出,再根據共軛復數的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點睛】本題主要考查復數代數形式的運算法則,考查共軛復數的概念,屬于基礎題.9.B【解析】

根據題中給出的分段函數,只要將問題轉化為求x≥10內的函數值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點睛】本題主要考查了分段函數中求函數的值,屬于基礎題.10.B【解析】

先辨別出圖象中實線部分為函數的圖象,虛線部分為其導函數的圖象,求出函數的導數為,由,得出,只需在圖中找出滿足不等式對應的的取值范圍即可.【詳解】若虛線部分為函數的圖象,則該函數只有一個極值點,但其導函數圖象(實線)與軸有三個交點,不合乎題意;若實線部分為函數的圖象,則該函數有兩個極值點,則其導函數圖象(虛線)與軸恰好也只有兩個交點,合乎題意.對函數求導得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數的單調遞減區間為.故選:B.【點睛】本題考查利用圖象求函數的單調區間,同時也考查了利用圖象辨別函數與其導函數的圖象,考查推理能力,屬于中等題.11.D【解析】

設目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結果即可.【詳解】設目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【點睛】本題考查由條形圖和折線圖等基礎知識解決實際問題,屬于基礎題.12.C【解析】試題分析:拋物線的準線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準線方程;二、填空題:本題共4小題,每小題5分,共20分。13.4【解析】設,則,,,,當且僅當,即時,等號成立.,故答案為414.【解析】

作出平面區域,可知平面區域為三角形,求出三角形的三個頂點坐標,設三角形的外接圓方程為,將三角形三個頂點坐標代入圓的一般方程,求出、、的值,即可得出所求圓的方程.【詳解】作出不等式組所表示的平面區域如下圖所示:由圖可知,平面區域為,聯立,解得,則點,同理可得點、,設的外接圓方程為,由題意可得,解得,,,因此,所求圓的方程為.故答案為:.【點睛】本題考查三角形外接圓方程的求解,同時也考查了一元二次不等式組所表示的平面區域的求作,考查數形結合思想以及運算求解能力,屬于中等題.15.63【解析】

對進行化簡,可得,再根據等比數列前項和公式進行求解即可【詳解】由數列為首項為,公比的等比數列,所以63【點睛】本題考查等比數列基本量的求法,當處理復雜因式時,常用基本方法為:因式分解,約分。但解題本質還是圍繞等差和等比的基本性質16.【解析】

以為原點,為軸,為軸,過作平面的垂線為軸建立空間直角坐標系,設點,根據題中條件得出,進而可求出的最大值,由此能求出三棱錐體積的最大值.【詳解】以為原點,為軸,為軸,過作平面的垂線為軸建立空間直角坐標系,則,,,設點,空間中的動點滿足,,所以,整理得,,當,時,取最大值,所以,三棱錐的體積為.因此,三棱錐體積的最大值為.故答案為:.【點睛】本題考查三棱錐體積的最大值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)2.【解析】

(1)利用的最小值為1,可得,,即可求橢圓的方程;(2)將直線的方程代入橢圓的方程中,得到關于的一元二次方程,由直線與橢圓僅有一個公共點知,即可得到,的關系式,利用點到直線的距離公式即可得到,.當時,設直線的傾斜角為,則,即可得到四邊形面積的表達式,利用基本不等式的性質,結合當時,四邊形是矩形,即可得出的最大值.【詳解】(1)設,則,,,,由題意得,,橢圓的方程為;

(2)將直線的方程代入橢圓的方程中,得.

由直線與橢圓僅有一個公共點知,,化簡得:.

設,,當時,設直線的傾斜角為,則,,,,∴當時,,,.當時,四邊形是矩形,.

所以四邊形面積的最大值為2.【點睛】本題主要考查橢圓的方程與性質、直線方程、直線與橢圓的位置關系、向量知識、二次函數的單調性、基本不等式的性質等基礎知識,考查運算能力、推理論證以及分析問題、解決問題的能力,考查數形結合、化歸與轉化思想.18.(1)證明見解析,;(2)【解析】

(1)利用,推出,然后利用等差數列的通項公式,即可求解;(2)由(1)知,利用裂項法,即可求解數列的前n項和.【詳解】(1)由題意,數列滿足且可得,即,所以數列是公差,首項的等差數列,故,所以.(2)由(1)知,所以數列的前n項和:==【點睛】本題主要考查了等差數列的通項公式,以及“裂項法”求解數列的前n項和,其中解答中熟記等差數列的定義和通項公式,合理利用“裂項法”求和是解答的關鍵,著重考查了推理與運算能力.19.(1)(2)點在以為直徑的圓上【解析】

(1)根據題意列出關于,,的方程組,解出,,的值,即可得到橢圓的標準方程;(2)設點,,則,,求出直線的方程,進而求出點的坐標,再利用中點坐標公式得到點的坐標,下面結合點在橢圓上證出,所以點在以為直徑的圓上.【詳解】(1)由題意可知,,解得,橢圓的標準方程為:.(2)設點,,則,,直線的斜率為,直線的方程為:,令得,,點的坐標為,,點的坐標為,,,,又點,在橢圓上,,,,點在以為直徑的圓上.【點睛】本題主要考查了橢圓方程,考查了中點坐標公式,以及平面向量的基本知識,屬于中檔題.20.(1)2;(2)【解析】分析:(1)將轉化為分段函數,求函數的最小值(2)分離參數,利用基本不等式證明即可.詳解:(Ⅰ)證明:,顯然在上單調遞減,在上單調遞增,所以的最小值為,即.(Ⅱ)因為恒成立,所以恒成立,當且僅當時,取得最小值,所以,即實數的最大值為.點睛:本題主要考查含兩個絕對值的函數的最值和不等式的應用,第二問恒成立問題分離參數,利用基本不等式求解很關鍵,屬于中檔題.21.(1),.(2)【解析】

(1)根據直線的參數方程為(為參數),消去參數,即可求得的的普通方程,曲線的極坐標方程為,利用極坐標化直角坐標的公式:,即可求得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論