




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省淇縣高級中學2025屆高三4月質量調研測試(二模)數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.2.已知函數()的最小值為0,則()A. B. C. D.3.已知是虛數單位,則()A. B. C. D.4.陀螺是中國民間最早的娛樂工具,也稱陀羅.如圖,網格紙上小正方形的邊長為,粗線畫出的是某個陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.5.如圖是國家統計局于2020年1月9日發布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環比)根據該折線圖,下列結論錯誤的是()A.2019年12月份,全國居民消費價格環比持平B.2018年12月至2019年12月全國居民消費價格環比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格6.已知集合,則()A. B.C. D.7.已知集合,,則()A. B. C. D.8.有一改形塔幾何體由若千個正方體構成,構成方式如圖所示,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數至少是()A.8 B.7 C.6 D.49.已知點P在橢圓τ:=1(a>b>0)上,點P在第一象限,點P關于原點O的對稱點為A,點P關于x軸的對稱點為Q,設,直線AD與橢圓τ的另一個交點為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.10.已知點P不在直線l、m上,則“過點P可以作無數個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.設變量滿足約束條件,則目標函數的最大值是()A.7 B.5 C.3 D.212.設全集,集合,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,為雙曲線的左、右焦點,雙曲線的漸近線上存在點滿足,則的最大值為________.14.割圓術是估算圓周率的科學方法,由三國時期數學家劉徽創立,他用圓內接正多邊形面積無限逼近圓面積,從而得出圓周率.現在半徑為1的圓內任取一點,則該點取自其內接正十二邊形內部的概率為________.15.函數在的零點個數為_________.16.請列舉用0,1,2,3這4個數字所組成的無重復數字且比210大的所有三位奇數:___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列的前項和為,且滿足.(1)求數列的通項公式;(2)若,,且數列前項和為,求的取值范圍.18.(12分)如圖,四棱錐中,底面是邊長為的菱形,,點分別是的中點.(1)求證:平面;(2)若,求直線與平面所成角的正弦值.19.(12分)如圖所示,四棱錐P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E為AB的中點,底面四邊形ABCD滿足∠ADC=∠DCB=90°,AD=1,BC=1.(Ⅰ)求證:平面PDE⊥平面PAC;(Ⅱ)求直線PC與平面PDE所成角的正弦值;(Ⅲ)求二面角D﹣PE﹣B的余弦值.20.(12分)如圖,已知三棱柱中,與是全等的等邊三角形.(1)求證:;(2)若,求二面角的余弦值.21.(12分)在中國,不僅是購物,而且從共享單車到醫院掛號再到公共繳費,日常生活中幾乎全部領域都支持手機支付.出門不帶現金的人數正在迅速增加。中國人民大學和法國調查公司益普索合作,調查了騰訊服務的6000名用戶,從中隨機抽取了60名,統計他們出門隨身攜帶現金(單位:元)如莖葉圖如示,規定:隨身攜帶的現金在100元以下(不含100元)的為“手機支付族”,其他為“非手機支付族”.(1)根據上述樣本數據,將列聯表補充完整,并判斷有多大的把握認為“手機支付族”與“性別”有關?(2)用樣本估計總體,若從騰訊服務的用戶中隨機抽取3位女性用戶,這3位用戶中“手機支付族”的人數為,求隨機變量的期望和方差;(3)某商場為了推廣手機支付,特推出兩種優惠方案,方案一:手機支付消費每滿1000元可直減100元;方案二:手機支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5折.如果你打算用手機支付購買某樣價值1200元的商品,請從實際付款金額的數學期望的角度分析,選擇哪種優惠方案更劃算?附:0.0500.0100.0013.8416.63510.82822.(10分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
聯立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標表示得到關于的關系式,解方程求解即可.【詳解】聯立方程,解方程可得或,不妨設A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點睛】本題考查橢圓方程及其性質、離心率的求解、平面向量垂直的坐標表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標表示得到關于的關系式是求解本題的關鍵;屬于中檔題、常考題型.2、C【解析】
設,計算可得,再結合圖像即可求出答案.【詳解】設,則,則,由于函數的最小值為0,作出函數的大致圖像,結合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數的圖像與性質,考查轉化思想,考查數形結合思想,屬于中檔題.3、B【解析】
根據復數的乘法運算法則,直接計算,即可得出結果.【詳解】.故選B【點睛】本題主要考查復數的乘法,熟記運算法則即可,屬于基礎題型.4、C【解析】
畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C【點睛】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關鍵.5、D【解析】
先對圖表數據的分析處理,再結簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環比是負的,所以B錯誤;設2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D【點睛】此題考查了對圖表數據的分析處理能力及進行簡單的合情推理,屬于中檔題.6、B【解析】
先由得或,再計算即可.【詳解】由得或,,,又,.故選:B【點睛】本題主要考查了集合的交集,補集的運算,考查學生的運算求解能力.7、D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點睛】本題考查集合的交集運算,考查學生的基本運算能力,是一道容易題.8、A【解析】
則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時該塔形中正方體的個數的最小值的求法.【詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數至少是8.故選:A.【點睛】本小題主要考查正方體有關計算,屬于基礎題.9、C【解析】
設,則,,,設,根據化簡得到,得到答案.【詳解】設,則,,,則,設,則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點睛】本題考查了橢圓的離心率,意在考查學生的計算能力和轉化能力.10、C【解析】
根據直線和平面平行的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】點不在直線、上,若直線、互相平行,則過點可以作無數個平面,使得直線、都與這些平面平行,即必要性成立,若過點可以作無數個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點可以作無數個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結合空間直線和平面平行的性質是解決本題的關鍵.11、B【解析】
由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,聯立方程組求得最優解的坐標,把最優解的坐標代入目標函數得結論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規劃中,利用可行域求目標函數的最值,屬于簡單題.求目標函數最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優解對應點(在可行域內平移變形后的目標函數,最先通過或最后通過的頂點就是最優解);(3)將最優解坐標代入目標函數求出最值.12、D【解析】
求解不等式,得到集合A,B,利用交集、補集運算即得解【詳解】由于故集合或故集合故選:D【點睛】本題考查了集合的交集和補集混合運算,考查了學生概念理解,數學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設,由可得,整理得,即點在以為圓心,為半徑的圓上.又點到雙曲線的漸近線的距離為,所以當雙曲線的漸近線與圓相切時,取得最大值,此時,解得.14、【解析】
求出圓內接正十二邊形的面積和圓的面積,再用幾何概型公式求出即可.【詳解】半徑為1的圓內接正十二邊形,可分割為12個頂角為,腰為1的等腰三角形,∴該正十二邊形的面積為,根據幾何概型公式,該點取自其內接正十二邊形的概率為,故答案為:.【點睛】本小題主要考查面積型幾何概型的計算,屬于基礎題.15、1【解析】
本問題轉化為曲線交點個數問題,在同一直角坐標系內,畫出函數的圖象,利用數形結合思想進行求解即可.【詳解】問題函數在的零點個數,可以轉化為曲線交點個數問題.在同一直角坐標系內,畫出函數的圖象,如下圖所示:由圖象可知:當時,兩個函數只有一個交點.故答案為:1【點睛】本題考查了求函數的零點個數問題,考查了轉化思想和數形結合思想.16、231,321,301,1【解析】
分個位數字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個數字所組成的無重復數字比210大的所有三位奇數有:(1)當個位數字是1時,數字可以是231,321,301;(2)當個位數字是3時數字可以是1.故答案為:231,321,301,1【點睛】本題考查了分類計數法的應用,考查了學生分類討論,數學運算的能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由,可求,然后由時,可得,根據等比數列的通項可求(2)由,而,利用裂項相消法可求.【詳解】(1)當時,,解得,當時,①②②①得,即,數列是以2為首項,2為公比的等比數列,;(2)∴,∴,,.【點睛】本題考查遞推公式在數列的通項求解中的應用,等比數列的通項公式、裂項求和方法,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.18、(1)見解析;(2).【解析】
(1)取的中點,連接,通過證明,即可證得;(2)建立空間直角坐標系,利用向量的坐標表示即可得解.【詳解】(1)證明:取的中點,連接.是的中點,,又,四邊形是平行四邊形.,又平面平面,平面.(2),,同理可得:,又平面.連接,設,則,建立空間直角坐標系.設平面的法向量為,則,則,取.直線與平面所成角的正弦值為.【點睛】此題考查證明線面平行,求線面角的大小,關鍵在于熟練掌握線面平行的證明方法,法向量法求線面角的基本方法,根據公式準確計算.19、(Ⅰ)證明見解析(Ⅱ).(Ⅲ)﹣.【解析】
(Ⅰ)由題知,如圖以點為原點,直線分別為軸,建立空間直角坐標系,計算,證明,從而平面PAC,即可得證;(Ⅱ)求解平面PDE的一個法向量,計算,即可得直線PC與平面PDE所成角的正弦值;(Ⅲ)求解平面PBE的一個法向量,計算,即可得二面角D﹣PE﹣B的余弦值.【詳解】(Ⅰ)PC⊥底面ABCD,,如圖以點為原點,直線分別為軸,建立空間直角坐標系,則,,,,又,平面PAC,平面PDE,平面PDE⊥平面PAC;(Ⅱ)設為平面PDE的一個法向量,又,則,取,得,直線PC與平面PDE所成角的正弦值;(Ⅲ)設為平面PBE的一個法向量,又則,取,得,,二面角D﹣PE﹣B的余弦值﹣.【點睛】本題主要考查了平面與平面的垂直,直線與平面所成角的計算,二面角大小的求解,考查了空間向量在立體幾何中的應用,考查了學生的空間想象能力與運算求解能力.20、(1)證明見解析;(2).【解析】
(1)取BC的中點O,則,由是等邊三角形,得,從而得到平面,由此能證明(2)以,,所在直線分別為x,y,z軸建立空間直角坐標系,利用向量法求得二面角的余弦值,得到結果.【詳解】(1)取BC的中點O,連接,,由于與是等邊三角形,所以有,,且,所以平面,平面,所以.(2)設,是全等的等邊三角形,所以,又,由余弦定理可得,在中,有,所以以,,所在直線分別為x,y,z軸建立空間直角坐標系,如圖所示,則,,,設平面的一個法向量為,則,令,則,又平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家庭教育服務合同
- 酒店餐廳品牌使用權與管理合同
- 農村金融機構品牌建設方案
- 山東消防施工合同
- 工程設備材料采購合同
- 學校食堂大樓承包施工合同
- 銷售苗木合同
- 農戶打井合同范本
- (18)-《四大名著》常考知識點
- 剩余土方清運合同范本
- 金蝶PLM詳細介紹
- 礦井維修電工技能鑒定考試題(高級工)
- 湖南文藝出版社小學六年級下冊音樂全冊教案
- 高中語文《祝福》“誰是兇手”系列之祥林嫂死亡事件《祝福》探究式學習(教學課件) 課件
- 電子商務稅收法律問題
- 水平泵房水泵聯合試運轉方案及安全技術措施
- 中國十大階層的劃分課件
- 中考數學分式與分式方程計算題(附答案)
- 了凡四訓-徐韻發(課堂PPT)
- 中國政法大學社會主義市場經濟概論重點歸納及復習試題(楊干忠版)
- 蹲踞式起跑 教案
評論
0/150
提交評論