




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
KPMGglobaltechreport—industrialmanufacturing
insights
Interoperability,hybridmodelsandAI
innovationarethebattlegroundsfordigitalexcellenceinindustrialmanufacturing
KPMG.MaketheDifference.
KPMGInternational|
IMhasabove-averageTheroadaheadforMethodologyHowKPMGcanhelp
KeyfindingsManufacturing’sproactive
datamaturityindustrialmanufacturing
IMexcelsat
achievingAIROI
andprogressivespirit
Executivesummary
Executivesummary
Intherapidlyevolvinglandscapeofindustrialmanufacturing(IM),
organizationsareincreasinglyrecognizingtheimperativeofdigital
transformationtoenhanceoperationalefficiency,qualitycontrol,andsustainability.TheKPMGglobaltechreporthighlightsthatindustrialmanufacturingfirmsareattheforefrontofthistransformation,
showcasingthehighestlevelsofdigitalmaturityacrossvarious
technologycategoriescomparedtoothersectors.Thisreport
servesasacriticalresourceforunderstandingthecurrentstateofdigitaladoptioninindustrialmanufacturingandthestrategicstepsnecessaryforcontinuedadvancement.
TheresearchconductedbyKPMGsurveyed2,450executives
from26countries,including368leadersfromtheindustrial
manufacturingsector.Thefindingsrevealthat76percentof
industrialmanufacturingfirmsexpressastrongwillingnessto
embracecutting-edgetechnology,thehighestamongallsectors
surveyed.Notably,thesectorexcelsinAIadoption,with34percentoforganizationsachievingareturnoninvestment(ROI)frommultiple
AIusecases.However,thereportalsoidentifiessignificantmaturitygapsinareassuchassupplychain,procurement,andfinance
functions,whichhinderthefullrealizationofdigitalpotential.
Toaddressthesechallengesandcapitalizeontheopportunities
presentedbydigitaltransformation,severalrecommendationsemergefromthereport.First,organizationsshouldfocusonenhancingtheirdatastrategiestohelpensureseamlessintegrationandanalysis
acrossdisparatesystems.ThisiscrucialforunlockingthefullpotentialofAIandachievingdata-leddecision-making.
Second,upskillingtheworkforceisessentialtohelpbridgetheskillsgapexacerbatedbytheriseofAI.Trainingprogramsshouldtarget
analyticaldecision-makingandfosteradata-centricculture,enablingemployeestoleveragereal-timedataeffectively.Furthermore,
organizationsmustprioritizethedevelopmentofrobustcybersecuritymeasurestoprotectinternaldatanetworks,especiallyastheybegintosharedatainrealtimewithexternalpartners.
KPMGglobaltechreport—industrialmanufacturinginsights
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Lastly,fosteringacultureofinnovationandagilitywillbevitalformeeting
evolvingclientexpectationsregardingleadtimesandcustomization.By
investinginprocessesthatelevatethevoiceofthecustomer,manufacturers
cangaininsightsthatdrivenewproductlinesandrevenuestreams.
2
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
IMhasabove-averageTheroadaheadforMethodologyHowKPMGcanhelp
KeyfindingsManufacturing’sproactive
datamaturityindustrialmanufacturing
IMexcelsat
achievingAIROI
andprogressivespirit
Executivesummary
Keyfindings
Manufacturing’sproactiveandprogressivespiritispropellingitsdigitalmaturity
Outoftheeightsectorspolled,manufacturingorganizationsaremostlikelytobeinthehigheststageofstrategicmaturityinthemajorityoftheninetechcategoriesmeasured.And
cutting-edgetechnology—thehighest proportionofallsectorssurveyed.
76%
ofindustrialmanufacturingfirmssaytheirworkforcehasanappetitetoembrace
ThesectorexcelsatachievingAIROI,butdisconnects
preventfurtherprogress
ManufacturingisoneofthethreesectorswhereorganizationsaremostlikelytobeatthemostmaturephaseofAIadoption,with
investment(ROI)inseveralAIusecases.
34%
alreadyachievingreturnon
80%
ofrespondentssayintheirleadershiproletheyempowertheirorganizationtostrategicallyinnovatesotheycancapitalizeonmarkettrendswithAI.
Whileithasabove-averagedatamaturity,thesectorcontinuestoholditselftohighstandards
Industrialmanufacturingperformsabovethecross-sectoraverageinthenumberofitsorganizationsthatareinour
toptwolevelsofdatamaturity.
KPMGglobaltechreport—industrialmanufacturinginsights3
IMhasabove-averageTheroadaheadforMethodologyHowKPMGcanhelp
Manufacturing’sproactive
andprogressivespirit
datamaturityindustrialmanufacturing
Executivesummary
Keyfindings
IMexcelsat
achievingAIROI
Manufacturing’sproactiveandprogressivespiritispropellingitsdigitalmaturity
Forthesecondyearrunning,industrial
manufacturingissettingthepacefordigital
transformation.Outofthesectorssurveyed,itis
theonewhoseorganizationsaremostlikelytobeinthehigheststageofstrategicmaturityinsixoutoftheninetechcategoriesmeasured.
Inthisstage,whichwecall‘proactive,’organizationshavesuccessfullydesignedandtestedastrategicvision,achievedleadershipfunding,andare
implementingthatstrategywhileadaptingittomarketdevelopments.
Inallninetechnologycategories,industrialmanufacturingisaheadofthecross-sectoraverageintermsoftheproportionoforganizationsintheproactivestage.
XaaStechnologies(includingpubliccloudormulti-cloud)
Cybersecurity
AIandautomation(includinggenerativeAI)
Dataandanalytics
Moderndelivery(includinglowcode/nocode)
Edgecomputing
Web3(includingblockchainandtokenization)
Quantumcomputing
VR/AR/XR(includingMetaverse)andspatialcomputing
35%
39%
30%
38%
31%
37%
28%
35%
26%
31%
25%
30%
25%
28%
22%
26%
24%
26%
AverageacrossallsectorsIndustrialmanufacturing
Q:Howwouldyoudescribeyourorganization’spositiontodayineachofthefollowingareas?[Thoseanswering‘Weareproactiveinprogressingagainstourstrategyandarecontinuallyevolving’]
Source:KPMGglobaltechreport2024
KPMGglobaltechreport—industrialmanufacturinginsights4
IMhasabove-averageTheroadaheadforMethodologyHowKPMGcanhelp
KeyfindingsManufacturing’sproactive
datamaturityindustrialmanufacturing
IMexcelsat
achievingAIROI
andprogressivespirit
Executivesummary
Strivingfordigitalmaturityandacultureof
innovationisacontinualgoalofandchallengeforourindustrialmanufacturingclients.Todaywe’rehelpingthemarchitectandimplement
strategiesthatembraceAI,machinelearninganddatatransformation,butwithaconcurrentfocusonhowtheirhumantalentcanthriveinsuchenvironments.Bothelementsareequallyimportanttotheirlong-termsuccess.
ClaudiaSaran
HeadofIndustrialManufacturingKPMGintheUS
Thismaturityisunderpinnedbyacultureoftechenthusiasm:
76percentofindustrialmanufacturingfirmssaytheirworkforce
hasanappetitetoembracecutting-edgetechnology—thehighestproportionofallsectorssurveyed.
Themanufacturingsectorappearstobetakingamorecomprehensiveapproachtoitstechnologyevaluation.Thisyear,executivesaredrawingonawiderrangeofsourcestoinformtheirinvestmentdecisions.
Thatsaid,thedrivershaveshiftedintermsofwhichhasthestrongestinfluenceontechchoices.While“followingcompetitors”isstillatopdecisiondriver(85percent)in2024,ithasfallentosecond,behind
“lookingtothird-partyguidance”(89percent).
Thesetactics,pairedwiththesector’sproactiveandprogressivespirit,appeartobepayingoff.
72%
ofindustrialmanufacturing
execssaythattheir
organizationissatisfiedwith
thevaluegeneratedbytheir
techinvestments,whichis
abovethecross-sectoraverage.
AccordingtoSaurabhBhatnagar,Partner,IndustrialAutomation,
IntelligenceandDigitalization,KPMGinIndia,meetingclient
expectationsaroundleadtimesandcustomizationisaprimeareaforthesectortogeneratevaluefromtechnologies.
“Clients’lead-timeexpectationsarebecomingshorterbythe
day,”saysBhatnagar.“Themarketrequiresmoreagile,responsiveproductioncapabilities—fromthesourcingofrawmaterialstothedownstreamsupplyofgoods.”
Asproductionspecificationsbecomemorecomplexandbespoke,manyorganizationsareturningtodigitalinterventions,systems,
processesandcontrolstobringcustomization,reliabilityandspeedintoproductioncycles.Theseupgradesshouldalsoextendto
operationalworkflowsinsupplychain,procurement,sales,andfinancefunctions,amongotherareas.
“Thevaluechainofindustrialmanufacturingisbeingconnectedandenhancedbydigitalfeatures,”saysBhatnagar.“Thishybridmodelismakingtheentirevaluechainfaster,informed,moredisciplinedandagileinrespondingtomarketneeds.”
Theseefficiencygainsarealsohelpingtoimprovetheenergy
efficiencyofproductionprocesses,accordingtoBhatnagar,for
instanceinreducingtheidletimeofmachinesorreducingbatch
cycletimesofcertainotherprocesses.Here,AIandmachinelearning(ML)areplayingcrucialrolesinfindingmoresustainableandgreen
operationalstrategiesformanufacturerstodeploy.
KPMGglobaltechreport—industrialmanufacturinginsights5
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Executivesummary
Keyfindings
Mfis’rtitive
Theroadaheadfor
industrialmanufacturing
IMhasabove-average
datamaturity
IMexcelsat
achievingAIROI
HowKPMGcanhelp
Methodology
ThesectorexcelsatachievingAIROI,butdisconnectspreventfurtherprogress
IndustrialmanufacturingistheleadingsectorinAIadoption.ItisoneofthethreesectorsmostlikelytobeatthemostmaturephaseofAIadoption,with34percentsecuringROIonseveraloftheirAIusecases.But,whiletherearepocketsofsuccess,thesectorneedstoaddresscriticalgapsthatpreventitfromaccessingthefullpotentialofAI,includingbutnotlimitedtoimprovingdata-basedpredictions,optimizingproducts,augmentinginnovation,enhancingproductivityandefficiency,andloweringcosts.
ProportionofsectorsatthehigheststageofAImaturity
28%29%
Tech
Retailandconsumerpackagedgoods
34%34%
34%27%
32%30%
LifesciencesIndustrialmanufacturing
Healthcare GovernmentFinancialServicesEnergy
Source:KPMGglobaltechreport2024
OneoftheprominentAIusecasesinthesectorisusingpredictivemaintenancetoenhanceequipmentreliability.Performance
diagnosticsAI,alongsidestrategicdatagenerationandstorage,allowsworkerstoanalyzereal-timedatafromvariousmachinecomponents.Thishelpsthemtomakeinformeddecisionsaboutequipment
functionality,performanceandreliability.Also,organizationsare
applyingAIandMLimagerecognitiontechnologiestoevaluate
thequalityofafinishedproducttoinforminterventionsthatwill
improvelaterbatches.FirmsarealsousingAIandMLtoupgradetheenvironmentalefficienciesoftheirequipmentasESGtargetsbecomemoreimportantacrossthesector.
AnotherproductiveusecaseishowthesectorisusingAItoaddresstalentshortages.Fourinfivemanufacturingexecutivessaythat
AIisfillingskillsgapsamongknowledgeworkers—gapsthathadpreviouslypresentedamajorchallenge.
Bhatnagaradvisesthat,asindustrialmanufacturersincorporateAI
andMLintotheirbusinessmodels,upskillingprogramsshouldtargetanalyticaldecision-makingandsciencetechnologyskills,aswellascreatingadata-centricculture.
KPMGglobaltechreport—industrialmanufacturinginsights6
?2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Executivesummary
Keyfindings
Mfis’rtitive
Theroadaheadfor
industrialmanufacturing
IMhasabove-average
datamaturity
IMexcelsat
achievingAIROI
HowKPMGcanhelp
Methodology
ofindustrial
80%
manufacturerssayAIissavingthemtime
andallowingthemtobemoreproductive
andfocuson
higher-valueactivities.
“So,factoryworkerscanmakebetterreal-timedecisionsonthe
groundbasedondatathat’sbeingthrownatthem,”saysBhatnagar.“[Factory]floorworkersshouldtaketheleadonthedecisionsthatAIandMLarenotreliableenoughtomakerightnow.BeforeAI,floor
workersmade30to40decisionsaday.Now,theyjustneedtofocuson,say,10extremelycritical,high-valuedecisions.”
IntermsofotherAIusecasesatplayinthesector,therapid
developmentofindustrialandprocesscontrolapplications
underpinnedbyAIpackages,low-costcomputerhardwareand
graphical-user-interfacetechnologyhasledtotheemergence
ofvirtualinstrumentation.Alsoknownas‘softsensors,’virtualinstrumentationactsasasubstituteforphysicalsensorsand
combinesreal-timedata,digitaltechandAI-backedmathematicalmodelstoestimateproductquality.
Thesesoftsensorsprovidemeasurementsatpointsinproductionlineswhereitisimpossibletoinstallaphysicalsensorduetoprohibitive
costsorharshoperationalconditions.Theycombinemultiplereal-timedatasourcesofprocessvariables—suchaswaterflowrates,temperatures,pressureandspeedoftravelonaconveyor—andconvertthemintoanumbertoforecastthequalityofaproduct.
Forinstance,ratherthanwaitingtoevaluatebatchqualityattheendoftheproductionprocess,onelargeintegratedsteelmanufacturingplantisdeployingsoftsensorsatallstagesofitsmanufacturing
cycle.Thisend-to-endmonitoringprovidesopportunitiesfor
proactiveinterventionsthatcanpreservethestabilityofproductionandminimizethepresenceofcontaminantsthatcouldcause
batchestoberejected.“Thissavestheplantfromwasting
productioncapacityandenergyonproducingoff-specmaterials,”saysBhatnagar.
Whiletheseadvancedengineeringsystemsanddesign
methodologiesarecrucialtoinnovation,theinfluenceoftheseAI
usecasesisoftenrestrictedbyconnectivitygapsbetweensystemsanddatasets,saysMartinKaestner,TechnologyLeader,IndustrialManufacturing,KPMGintheUS.
“ThetruepotentialofAIisrealizedwhendatafromdisparate
systems,suchascustomerrelationshipmanagementand
procurementplatforms,isaggregatedandanalyzedholistically,”
saysKaestner.“Thisisparticularlycriticalinsectorssuchas
aerospaceanddefense,whereorganizationsoftenpossesssomeofthebest-engineeredproducts,yettheystruggletoidentifycriticalgapsintheiroperationalframeworksbecauseofsilos.”
“TheinabilitytosynthesizedataacrossvariousplatformsinmodernmanufacturingenvironmentswillskewthevisibilityAImodelshaveofcriticalareassuchasglobalsupplychaindynamics,”Kaestneradds.
Withoutacohesivestrategytofullyintegrateandanalyzedatafrommultiplesources,companiesriskmissingoutonvaluableAI-poweredinsightsthatcoulddriveefficiency,reducecosts,andacceleratetimetomarket.
Intherealmofindustrialmanufacturing,theintegrationofadvancedengineeringsystemsanddesignmethodologiesisparamountforfosteringinnovationandenhancingoperationalefficiency.Whilethesectorhasbeenmeticulouslyworkingtoadoptthelatesttechnologies,includingartificialintelligence(AI)andextensivemachinelearningcapabilities,theseareoftensiloedwithinindividualsystemssuchascustomerrelationshipmanagementandprocurementplatforms.
MartinKaestner
TechnologyLeader,IndustrialManufacturingKPMGintheUS
KPMGglobaltechreport—industrialmanufacturinginsights7
Executivesummary
Keyfindings
Mfis’rtitive
inrilang
Methodology
HowKPMGcanhelp
IMhasabove-average
datamaturity
IMexcelsat
achievingAIROI
Whileithasabove-averagedatamaturity,theindustrycontinuestoholditselfto
highstandards
Eventhoughdatasiloesremainachallenge,strongdatafoundationssupportthesector’soverallAIprogress.Industrialmanufacturing
performsabovethecross-sectoraverageintheproportionofitsorganizationsthatareinourtoptwolevelsofdatamaturity.
“Theindustrialmanufacturingsectorhasbuiltarichdigital
architectureforitsdata,”saysBhatnagar.“Thesector’shigh-qualitydatamanagementprocessesandinfrastructuresuchassensors,
serversandcloudplatformshelpensurethattherightdataispulledfromtherightplacesattherightfrequency,formatandquality.”
Industrialmanufacturingisthesectormostlikelytociteimmaturedatamanagementasthetopfactorslowingtheirdigitaltransformationprogress.
KPMGglobaltechreport—industrialmanufacturinginsights8
Executivesummary
Keyfindings
Mfis’rtitive
inrilang
Methodology
HowKPMGcanhelp
IMhasabove-average
datamaturity
IMexcelsat
achievingAIROI
Proportionofexecutivesinthetoptwolevelsofmaturityindatamanagement
Datainvestments
Ensuringdatasysteminvestmentsalignwithprioritiesofallbusinessstakeholders
53%
56%
52%
56%
52%
57%
51%
58%
51%
58%
50%
54%
Datamonetization
Leveragingdataforcompetitiveadvantageinnewbusinessmodels
Datasecurity
Protectingdatathroughthesecurityofsystems,standardsandgovernanceprocesses
Datagovernance
Conductingauditstoaddressdataintegrityandcreatingframeworksthatprovideclearaccountability
Datainteroperability
Addressingdatasilosandpoordataintegration
Datascience
Usingreal-timeorpredictiveanalyticstoinformdecisions
AverageacrossallsectorsIndustrialmanufacturing
Howeffectiveareyourdataandanalyticsactivitiesinthefollowingareas?(Influential/embedded)
Source:KPMGglobaltechreport2024
Butratherthanbecomecomplacent,thesectorcontinuestohold
itselftohighstandardsandmaintainsambitiousdatagoals.Althoughitsaccesstodataishigh,industrialmanufacturingisalsothesectorwhoseorganizationsaremostlikelytobealerttothefactthat
furtherimprovementstothedatastrategywouldacceleratethepaceofdigitaltransformation.Forinstance,totakefulladvantageofgenerativeAI,industrialmanufacturerswillneedtoconstructareliable,trustworthydatainfrastructurethatiscustomizedtotheirbusinessneeds.
So,howcanthesector’sorganizationsmakesurethattheirdata
strategiesareenablersofprogress,ratherthanblockers?“Tomake
theirbusinessesmoreprofitableandcustomercentric,manufacturersneedtokeepincreasingtheirvisualizationcapabilitiesandworkflowstofacilitatedata-leddecision-makingandensuretheseinsightsreachtherightemployeesattherighttime,”saysBhatnagar.“Thereisstillworktobedonehere,buttheyareonthevergeofgettingthisright.”
Acrucialstepwillbetoprovidedashboardinterfacesthatpresentdatainsightsinaclearandintuitiveformat,sothatworkerscan
makedecisionsquickly.Thesuccessoftheseplatformswilldependheavilyondatagovernanceandinteroperabilitycapabilities,which,incomparisonwithothersectors,arebothkeyskillsforindustrial
manufacturing.Onbothcounts,industrialmanufacturingperformed
7percentagepointshigherthanthecross-sectoraverageof
51percent.
Interoperabilitywillbeanespeciallyimportantrequirementfor
trustworthydigitalinnovation,andparticularlywhenitcomestoAI.Tosustaintheirmomentumandmovedataathighspeedsandeveninrealtime,manufacturersmustfocuspartsoftheircybersecuritystrategiesonprotectinginternaldatatransfer.“Oneofthebiggestthingsmanufacturershavetoaddressisbuildingenoughsecurity
protectionaroundtheirinternalnetworkstoengineeringdesign
systems,”saysBhatnagar.“Especiallyforwhentheybegintosharedatainrealtimewiththeoutsideworld.”
KPMGglobaltechreport—industrialmanufacturinginsights9
Executivesummary
Keyfindings
Mfis’rtitive
Methodology
HowKPMGcanhelp
Theroadaheadfor
industrialmanufacturing
IMhasabove-average
datamaturity
IMexcelsat
achievingAIROI
Theroadaheadforindustrialmanufacturing
Asthemanufacturingsectorrespondsstrategicallytoshiftingsupplychaindynamicsandgrowingenvironmentaldemands,itsorganizationsshould:
Nurturetheproactiveandprogressivespiritthatispoweringtheirdigitaltransformationefforts.Theongoingevolutionofcybersecuritystrategiesshouldfeatureinitiativesthatenhancethesecurityprotectionofinternaldatanetworkspluggingintoengineeringdesignsystems,especiallyforreal-timedatasharing.
Improvevisualizationcapabilitiesandworkflowstohelpworkersmakebetterdecisionsbasedondatainsights.Andmakesurethattheseinsightsreachtherightemployeesattherighttimes.
InparallelwiththeriseofAIintheworkplace,preparetheworkforcebyupskillingfactoryworkerswithlearningprogramsthattargetanalyticaldecision-makingandsciencetechnologyskills.IMexecutivesaremoreinclinedthanmosttobelievethatGenAIwillboostproductivityandenhancecollaborationwithapositiveimpactinITandcreativejobs.1
Explorenewwaystoinnovatetomeetclients’expectationsofspeedandcustomization,andmakeoperationsmoreenergyefficient.By
capturingandcentralizingtheadhocdataprovidedbyconsumerswhentheysharetheirpreferencesandfeedbackoncertainproductfeatures,manufacturerscouldfindinsightsthatleadtonewproductlinesorrevenuestreams.Investinprocessesandsystemsthatelevatethevoiceofthecustomersothattheorganizationcangiveitstargetaudiencewhatitwants.
ToreallyoptimizetheuseofAIandnewtechnology,industrialmanufacturers
needtocombinewhattheydobest
(manufacturephysicalproducts)with
whatdigitaldoesbest(collectreal-time
dataandembedAI)todifferentiatetheirproductsandgainanewcompetitive
advantage.Itwillnotbeenoughtoadd
digitalfunctionalitytoanalogmachines—acompletere-imaginationisneeded.
CarmeloMariano
IndustrialManufacturingLeaderKPMGItaly
Manufacturingmightbeaheadofothersectorsindigitaltransformation,buttheneedtoinnovatedoesnotstophere.“Wewillcontinuetoseeaconstantpushforinnovation,”saysKPMGinIndia’sSaurabhBhatnagar.“Moretechnology,moreagility,moretailoringtosuitthecustomer,andfasterspeedto
delivery.Tomeettheseneeds,theindustrialmanufacturingsectorwillneedtorelyondigitalinterventionsevenmoreinfuture.”
1KPMGinUS
GettingaheadstartwithgenerativeAIinindustrialmanufacturing
,2023
KPMGglobaltechreport—industrialmanufacturinginsights10
Manufacturing’sproactiveIMexcelsat
andprogressivespiritachievingAIROI
Methodology
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版數學六年級下冊第五章廣角-鴿巢問題解答題訓練
- 上海中華職業技術學院《體育美學》2023-2024學年第一學期期末試卷
- 江西省贛州市章貢區2025屆小升初總復習數學精練含解析
- 宿州職業技術學院《職業教育信息化概論》2023-2024學年第二學期期末試卷
- 呼和浩特民族學院《羽毛球專項理論與實踐》2023-2024學年第二學期期末試卷
- 重慶電訊職業學院《釀酒機械與設備》2023-2024學年第一學期期末試卷
- 余江縣第一中學2025年高三下學期模擬卷(五)物理試題含解析
- 北京語言大學《團體心理咨詢》2023-2024學年第一學期期末試卷
- 西南財經大學天府學院《寫意花鳥實驗教學》2023-2024學年第二學期期末試卷
- 河北省石家莊市2025年高三十月月考物理試題試卷含解析
- 五氟乙氧基環三磷腈的合成方法研究華中師范大學
- 2023年10月自考財務管理學00067試題及答案
- 《戰略性新興產業分類(2023年)》
- LY/T 2974-2018旱冬瓜培育技術規程
- GB/T 3745.1-1983卡套式三通管接頭
- 儀器儀表維保方案
- 區域經理工作手冊課件
- 慢性肺源性心臟病(教學)課件
- 小學三年級詩詞大會初賽比賽題目課件
- 大豆油精煉加工工藝
- 部編版初中語文九年級下冊第一單元-復習課件
評論
0/150
提交評論