




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆四川省眉山一中辦學共同體重點中學高三年級第二學期期中考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題,,則是()A., B.,.C., D.,.2.若復數,則()A. B. C. D.203.函數在上的圖象大致為()A. B.C. D.4.設集合,則()A. B. C. D.5.已知向量,則是的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充要條件6.框圖與程序是解決數學問題的重要手段,實際生活中的一些問題在抽象為數學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數據的方差,設計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應填入()A., B. C., D.,7.函數在上為增函數,則的值可以是()A.0 B. C. D.8.設復數滿足,則()A.1 B.-1 C. D.9.已知的垂心為,且是的中點,則()A.14 B.12 C.10 D.810.設a,b都是不等于1的正數,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件11.曲線在點處的切線方程為()A. B. C. D.12.已知等差數列的前13項和為52,則()A.256 B.-256 C.32 D.-32二、填空題:本題共4小題,每小題5分,共20分。13.已知,則__________.14.從編號為,,,的張卡片中隨機抽取一張,放回后再隨機抽取一張,則第二次抽得的卡片上的數字能被第一次抽得的卡片上數字整除的概率為_____________.15.已知等差數列的前n項和為Sn,若,則____.16.已知,為雙曲線的左、右焦點,雙曲線的漸近線上存在點滿足,則的最大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)隨著科技的發展,網絡已逐漸融入了人們的生活.網購是非常方便的購物方式,為了了解網購在我市的普及情況,某調查機構進行了有關網購的調查問卷,并從參與調查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)經常網購偶爾或不用網購合計男性50100女性70100合計(1)完成上表,并根據以上數據判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關?(2)①現從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優惠券,求選取的3人中至少有2人經常網購的概率;②將頻率視為概率,從我市所有參與調查的市民中隨機抽取10人贈送禮品,記其中經常網購的人數為,求隨機變量的數學期望和方差.參考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)設函數.(1)若,求實數的取值范圍;(2)證明:,恒成立.19.(12分)已知函數.(Ⅰ)當時,討論函數的單調區間;(Ⅱ)若對任意的和恒成立,求實數的取值范圍.20.(12分)已知圓外有一點,過點作直線.(1)當直線與圓相切時,求直線的方程;(2)當直線的傾斜角為時,求直線被圓所截得的弦長.21.(12分)已知.(1)若曲線在點處的切線也與曲線相切,求實數的值;(2)試討論函數零點的個數.22.(10分)在直角坐標系中,直線的參數方程是為參數),曲線的參數方程是為參數),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據全稱命題的否定為特稱命題,得到結果.【詳解】根據全稱命題的否定為特稱命題,可得,本題正確選項:【點睛】本題考查含量詞的命題的否定,屬于基礎題.2、B【解析】
化簡得到,再計算模長得到答案.【詳解】,故.故選:.【點睛】本題考查了復數的運算,復數的模,意在考查學生的計算能力.3、A【解析】
首先判斷函數的奇偶性,再根據特殊值即可利用排除法解得;【詳解】解:依題意,,故函數為偶函數,圖象關于軸對稱,排除C;而,排除B;,排除D.故選:.【點睛】本題考查函數圖象的識別,函數的奇偶性的應用,屬于基礎題.4、C【解析】
解對數不等式求得集合,由此求得兩個集合的交集.【詳解】由,解得,故.依題意,所以.故選:C【點睛】本小題主要考查對數不等式的解法,考查集合交集的概念和運算,屬于基礎題.5、A【解析】
向量,,,則,即,或者-1,判斷出即可.【詳解】解:向量,,,則,即,或者-1,所以是或者的充分不必要條件,故選:A.【點睛】本小題主要考查充分、必要條件的判斷,考查向量平行的坐標表示,屬于基礎題.6、A【解析】
依題意問題是,然后按直到型驗證即可.【詳解】根據題意為了計算7個數的方差,即輸出的,觀察程序框圖可知,應填入,,故選:A.【點睛】本題考查算法與程序框圖,考查推理論證能力以及轉化與化歸思想,屬于基礎題.7、D【解析】
依次將選項中的代入,結合正弦、余弦函數的圖象即可得到答案.【詳解】當時,在上不單調,故A不正確;當時,在上單調遞減,故B不正確;當時,在上不單調,故C不正確;當時,在上單調遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數的單調性,涉及到誘導公式的應用,是一道容易題.8、B【解析】
利用復數的四則運算即可求解.【詳解】由.故選:B【點睛】本題考查了復數的四則運算,需掌握復數的運算法則,屬于基礎題.9、A【解析】
由垂心的性質,得到,可轉化,又即得解.【詳解】因為為的垂心,所以,所以,而,所以,因為是的中點,所以.故選:A【點睛】本題考查了利用向量的線性運算和向量的數量積的運算率,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.10、C【解析】
根據對數函數以及指數函數的性質求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數,對數不等式的解法,是基礎題.11、A【解析】
將點代入解析式確定參數值,結合導數的幾何意義求得切線斜率,即可由點斜式求的切線方程.【詳解】曲線,即,當時,代入可得,所以切點坐標為,求得導函數可得,由導數幾何意義可知,由點斜式可得切線方程為,即,故選:A.【點睛】本題考查了導數的幾何意義,在曲線上一點的切線方程求法,屬于基礎題.12、A【解析】
利用等差數列的求和公式及等差數列的性質可以求得結果.【詳解】由,,得.選A.【點睛】本題主要考查等差數列的求和公式及等差數列的性質,等差數列的等和性應用能快速求得結果.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】解:由題意可知:.14、【解析】
基本事件總數,第二次抽得的卡片上的數字能被第一次抽得的卡片上數字的基本事件有8個,由此能求出概率.【詳解】解:從編號為,,,的張卡片中隨機抽取一張,放回后再隨機抽取一張,基本事件總數,第二次抽得的卡片上的數字能被第一次抽得的卡片上數字的基本事件有8個,分別為:,,,,,,,.所以第二次抽得的卡片上的數字能被第一次抽得的卡片上數字整除的概率為.故答案為.【點睛】本題考查概率的求法,考查古典概型、列舉法等基礎知識,屬于基礎題.15、【解析】
由,,成等差數列,代入可得的值.【詳解】解:由等差數列的性質可得:,,成等差數列,可得:,代入,可得:,故答案為:.【點睛】本題主要考查等差數列前n項和的性質,相對不難.16、【解析】
設,由可得,整理得,即點在以為圓心,為半徑的圓上.又點到雙曲線的漸近線的距離為,所以當雙曲線的漸近線與圓相切時,取得最大值,此時,解得.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)詳見解析;(Ⅱ)①;②數學期望為6,方差為2.4.【解析】
(1)完成列聯表,由列聯表,得,由此能在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關.(2)①由題意所抽取的10名女市民中,經常網購的有人,偶爾或不用網購的有人,由此能選取的3人中至少有2人經常網購的概率.②由列聯表可知,抽到經常網購的市民的頻率為:,由題意,由此能求出隨機變量的數學期望和方差.【詳解】解:(1)完成列聯表(單位:人):經常網購偶爾或不用網購合計男性5050100女性7030100合計12080200由列聯表,得:,∴能在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關.(2)①由題意所抽取的10名女市民中,經常網購的有人,偶爾或不用網購的有人,∴選取的3人中至少有2人經常網購的概率為:.②由列聯表可知,抽到經常網購的市民的頻率為:,將頻率視為概率,∴從我市市民中任意抽取一人,恰好抽到經常網購市民的概率為0.6,由題意,∴隨機變量的數學期望,方差D(X)=.【點睛】本題考查獨立檢驗的應用,考查概率、離散型隨機變量的分布列、數學期望、方差的求法,考查古典概型、二項分布等基礎知識,考查運算求解能力,是中檔題.18、(1)(2)證明見解析【解析】
(1)將不等式化為,利用零點分段法,求得不等式的解集.(2)將要證明的不等式轉化為證,恒成立,由的最小值為,得到只要證,即證,利用絕對值不等式和基本不等式,證得上式成立.【詳解】(1)∵,∴,即當時,不等式化為,∴當時,不等式化為,此時無解當時,不等式化為,∴綜上,原不等式的解集為(2)要證,恒成立即證,恒成立∵的最小值為-2,∴只需證,即證又∴成立,∴原題得證【點睛】本題考查絕對值不等式的性質、解法,基本不等式等知識;考查推理論證能力、運算求解能力;考查化歸與轉化,分類與整合思想.19、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)首先求得導函數,然后結合導函數的解析式分類討論函數的單調性即可;(Ⅱ)將原問題進行等價轉化為,,恒成立,然后構造新函數,結合函數的性質確定實數的取值范圍即可.【詳解】解:(Ⅰ)當時,,當時,在上恒成立,函數在上單調遞減;當時,由得:;由得:.∴當時,函數的單調遞減區間是,無單調遞增區間:當時,函數的單調遞減區間是,函數的單調遞增區間是.(Ⅱ)對任意的和,恒成立等價于:,,恒成立.即,,恒成立.令:,,,則得,由此可得:在區間上單調遞減,在區間上單調遞增,∴當時,,即又∵,∴實數的取值范圍是:.【點睛】本題主要考查導函數研究函數的單調性和恒成立問題,考查分類討論的數學思想,等價轉化的數學思想等知識,屬于中等題.20、(1)或(2).【解析】
(1)根據題意分斜率不存在和斜率存在兩種情況即可求得結果;(2)先求出直線方程,然后求得圓心與直線的距離,由弦長公式即可得出答案.【詳解】解:(1)由題意可得,直線與圓相切當斜率不存在時,直線的方程為,滿足題意當斜率存在時,設直線的方程為,即∴,解得∴直線的方程為∴直線的方程為或(2)當直線的傾斜角為時,直線的方程為圓心到直線的距離為∴弦長為【點睛】本題考查了直線的方程、直線與圓的位置關系、點到直線的距離公式及弦長公式,培養了學生分析問題與解決問題的能力.21、(1)(2)答案不唯一具體見解析【解析】
(1)利用導數的幾何意義,設切點的坐標,用不同的方式求出兩種切線方程,但兩條切線本質為同一條,從而得到方程組,再構造函數研究其最大值,進而求得;(2)對函數進行求導后得,對分三種情況進行一級討論,即,,,結合函數圖象的單調性及零點存在定理,可得函數零點情況.【詳解】解:(1)曲線在點處的切線方程為,即.令切線與曲線相切于點,則切線方程為,∴,∴,令,則,記,于是,在上單調遞增,在上單調遞減,∴,于是,.(2),①當時,恒成立,在上單調遞增,且,∴函數在上有且僅有一個零點;②當時,在R上沒有零點;③當時,令,則,即函數的增區間是,同理,減區間是,∴.ⅰ)若,則,在上沒有零點;ⅱ)若,則有且僅有一個零點;ⅲ)若,則.,令,則,∴當時,單調遞增,.∴又∵,∴在R上恰有兩個零點,綜上所述,當時,函數沒有零點;當或時,函數恰有一個零點;當時,恰有兩個零點.【點睛】本題考查導數的幾何意義、切線方程、零點等知識,求解切線有關問題時,一定要明確切點坐標.以導數為工具,研究函數的圖象特征及性質,從而得到函數的零點個數,此時如果用到零點存在定理,必需說明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年安徽審計職業學院高職單招職業適應性測試歷年(2019-2024年)真題考點試卷含答案解析
- 2025年安徽衛生健康職業學院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2025年太原旅游職業學院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 孩子嘔吐發燒護理措施
- 蒙古娃玩具課件
- 水彩插畫與卡通說課教學設計
- 119安全教育課件
- 護理操作的并發癥
- 6丶7的知識教學課件
- 人教版數學六年級下冊第二單元百分數(二)測試題含答案
- 《人工智能導論》(第2版)高職全套教學課件
- 大連醫科大學課件模板
- AQ 1064-2008 煤礦用防爆柴油機無軌膠輪車安全使用規范(正式版)
- 職工飲酒責任書
- 樣機試用合同模板
- 物業管理費收費技巧培訓
- 服裝設計部門績效考核方案
- 2024年上海市八年級語文下學期期中考試復習(課內古詩文+課外文言文)
- 清明時節的中醫養生
- 霍蘭德興趣島課件
- 開封大學單招職業技能測試參考試題庫(含答案)
評論
0/150
提交評論