廣西兩校2025屆高三下學期第一次聯數學試題_第1頁
廣西兩校2025屆高三下學期第一次聯數學試題_第2頁
廣西兩校2025屆高三下學期第一次聯數學試題_第3頁
廣西兩校2025屆高三下學期第一次聯數學試題_第4頁
廣西兩校2025屆高三下學期第一次聯數學試題_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西兩校2025屆高三下學期第一次聯數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數滿足,則的值為()A. B. C. D.22.已知等差數列的前項和為,若,,則數列的公差為()A. B. C. D.3.《九章算術》“少廣”算法中有這樣一個數的序列:列出“全步”(整數部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分數進行通分約簡,又用最下面的分母去遍乘諸(未通者)分子和以通之數,逐個照此同樣方法,直至全部為整數,例如:及時,如圖:記為每個序列中最后一列數之和,則為()A.147 B.294 C.882 D.17644.已知集合A,則集合()A. B. C. D.5.已知是函數圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.6.關于函數有下述四個結論:()①是偶函數;②在區間上是單調遞增函數;③在上的最大值為2;④在區間上有4個零點.其中所有正確結論的編號是()A.①②④ B.①③ C.①④ D.②④7.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.8.如圖,已知平面,,、是直線上的兩點,、是平面內的兩點,且,,,,.是平面上的一動點,且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.9.若為虛數單位,則復數在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知集合,,則等于()A. B. C. D.11.已知函數,方程有四個不同的根,記最大的根的所有取值為集合,則“函數有兩個零點”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.如圖,長方體中,,,點T在棱上,若平面.則()A.1 B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.若四棱錐的側面內有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數k,且動點Q的軌跡是拋物線,則當二面角平面角的大小為時,k的值為______.14.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),則?_____,△ABC的面積為_____.15.設,滿足約束條件,若的最大值是10,則________.16.設數列的前項和為,且對任意正整數,都有,則___三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在平面四邊形中,的面積為.(1)求的長;(2)已知,為銳角,求.18.(12分)已知函數(1)若函數有且只有一個零點,求實數的取值范圍;(2)若函數對恒成立,求實數的取值范圍.19.(12分)設,函數.(1)當時,求在內的極值;(2)設函數,當有兩個極值點時,總有,求實數的值.20.(12分)在中,角,,的對邊分別為,其中,.(1)求角的值;(2)若,,為邊上的任意一點,求的最小值.21.(12分)已知矩陣的一個特征值為3,求另一個特征值及其對應的一個特征向量.22.(10分)已知函數.(1)當時,求函數的值域;(2)的角的對邊分別為且,,求邊上的高的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由復數的除法運算整理已知求得復數z,進而求得其模.【詳解】因為,所以故選:C【點睛】本題考查復數的除法運算與求復數的模,屬于基礎題.2、D【解析】

根據等差數列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點睛】本題考查了等差數列的計算,意在考查學生的計算能力.3、A【解析】

根據題目所給的步驟進行計算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【點睛】本小題主要考查合情推理,考查中國古代數學文化,屬于基礎題.4、A【解析】

化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎題.5、C【解析】

先畫出函數圖像和圓,可知,若設,則,所以,而要求的最小值,只要取得最大值,若設圓的圓心為,則,所以只要取得最小值,若設,則,然后構造函數,利用導數求其最小值即可.【詳解】記圓的圓心為,設,則,設,記,則,令,因為在上單調遞增,且,所以當時,;當時,,則在上單調遞減,在上單調遞增,所以,即,所以(當時等號成立).故選:C【點睛】此題考查的是兩個向量的數量積的最小值,利用了導數求解,考查了轉化思想和運算能力,屬于難題.6、C【解析】

根據函數的奇偶性、單調性、最值和零點對四個結論逐一分析,由此得出正確結論的編號.【詳解】的定義域為.由于,所以為偶函數,故①正確.由于,,所以在區間上不是單調遞增函數,所以②錯誤.當時,,且存在,使.所以當時,;由于為偶函數,所以時,所以的最大值為,所以③錯誤.依題意,,當時,,所以令,解得,令,解得.所以在區間,有兩個零點.由于為偶函數,所以在區間有兩個零點.故在區間上有4個零點.所以④正確.綜上所述,正確的結論序號為①④.故選:C【點睛】本小題主要考查三角函數的奇偶性、單調性、最值和零點,考查化歸與轉化的數學思想方法,屬于中檔題.7、D【解析】

根據題意畫出幾何關系,由四邊形的內切圓面積求得半徑,結合四邊形面積關系求得與等量關系,再根據基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據題意,畫出幾何關系如下圖所示:設四邊形的內切圓半徑為,雙曲線半焦距為,則所以,四邊形的內切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質的簡單應用,圓錐曲線與基本不等式綜合應用,屬于中檔題.8、B【解析】

為所求的二面角的平面角,由得出,求出在內的軌跡,根據軌跡的特點求出的最大值對應的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內,以為軸,以的中垂線為軸建立平面直角坐標系則,設,整理可得:在內的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當與圓相切時,最大,取得最小值此時故選【點睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據題目選擇方法求出結果.9、D【解析】

根據復數的運算,化簡得到,再結合復數的表示,即可求解,得到答案.【詳解】由題意,根據復數的運算,可得,所對應的點為位于第四象限.故選D.【點睛】本題主要考查了復數的運算,以及復數的幾何意義,其中解答中熟記復數的運算法則,準確化簡復數為代數形式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.10、B【解析】

解不等式確定集合,然后由補集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點睛】本題考查集合的綜合運算,以及一元二次不等式的解法,屬于基礎題型.11、A【解析】

作出函數的圖象,得到,把函數有零點轉化為與在(2,4]上有交點,利用導數求出切線斜率,即可求得的取值范圍,再根據充分、必要條件的定義即可判斷.【詳解】作出函數的圖象如圖,由圖可知,,函數有2個零點,即有兩個不同的根,也就是與在上有2個交點,則的最小值為;設過原點的直線與的切點為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數有兩個零點”是“”的充分不必要條件,故選A.【點睛】本題主要考查了函數零點的判定,考查數學轉化思想方法與數形結合的解題思想方法,訓練了利用導數研究過曲線上某點處的切線方程,試題有一定的綜合性,屬于中檔題.12、D【解析】

根據線面垂直的性質,可知;結合即可證明,進而求得.由線段關系及平面向量數量積定義即可求得.【詳解】長方體中,,點T在棱上,若平面.則,則,所以,則,所以,故選:D.【點睛】本題考查了直線與平面垂直的性質應用,平面向量數量積的運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數k,可得,由此可得,則由可求k值.【詳解】解:如圖,設二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.∵點Q到底面的距離與到點P的距離之比為正常數k,∴,則,∵動點Q的軌跡是拋物線,∴,即則.∴二面角的平面角的余弦值為解得:().故答案為:.【點睛】本題考查了四棱錐的結構特征,由四棱錐的側面與底面的夾角求參數值,屬于中檔題.14、【解析】

①根據向量數量積的坐標表示結合兩角差的正弦公式的逆用即可得解;②結合①求出,根據面積公式即可得解.【詳解】①2(sin32°?cos77°﹣cos32°?sin77°),②,,∴,∴.故答案為:.【點睛】此題考查平面向量與三角函數解三角形綜合應用,涉及平面向量數量積的坐標表示,三角恒等變換,根據三角形面積公式求解三角形面積,綜合性強.15、【解析】

畫出不等式組表示的平面區域,數形結合即可容易求得結果.【詳解】畫出不等式組表示的平面區域如下所示:目標函數可轉化為與直線平行,數形結合可知當且僅當目標函數過點,取得最大值,故可得,解得.故答案為:.【點睛】本題考查由目標函數的最值求參數值,屬基礎題.16、【解析】

利用行列式定義,得到與的關系,賦值,即可求出結果。【詳解】由,令,得,解得。【點睛】本題主要考查行列式定義的應用。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)4.【解析】

(1)利用三角形的面積公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,進而求得,利用同角三角函數的基本關系式求得.【詳解】(1)在中,由面積公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,為銳角.【點睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形面積公式,考查同角三角函數的基本關系式,屬于中檔題.18、(1);(2).【解析】

(1)求導得到,討論和兩種情況,計算函數的單調性,得到,再討論,,三種情況,計算得到答案.(2)計算得到,討論,兩種情況,分別計算單調性得到函數最值,得到答案.【詳解】(1),①當時恒成立,所以單調遞增,因為,所以有唯一零點,即符合題意;②當時,令,函數在上單調遞減,在上單調遞增,函數。(i)當即,所以符合題意,(ii)當即時,因為,故存在,所以不符題意(iii)當時,因為,設,所以,單調遞增,即,故存在,使得,不符題意;綜上,的取值范圍為。(2)。①當時,恒成立,所以單調遞增,所以,即符合題意;②當時,恒成立,所以單調遞增,又因為,所以存在,使得,且當時,。即在上單調遞減,所以,不符題意。綜上,的取值范圍為.【點睛】本題考查了函數的零點問題,恒成立問題,意在考查學生的分類討論能力和綜合應用能力.19、(1)極大值是,無極小值;(2)【解析】

(1)當時,可求得,令,利用導數可判斷的單調性并得其零點,從而可得原函數的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數后轉化為求函數的最值可解決;【詳解】(1)當時,.令,則,顯然在上單調遞減,又因為,故時,總有,所以在上單調遞減.由于,所以當時,;當時,.當變化時,的變化情況如下表:+-增極大減所以在上的極大值是,無極小值.(2)由于,則.由題意,方程有兩個不等實根,則,解得,且,又,所以.由,,可得又.將其代入上式得:.整理得,即當時,不等式恒成立,即.當時,恒成立,即,令,易證是上的減函數.因此,當時,,故.當時,恒成立,即,因此,當時,所以.綜上所述,.【點睛】本題考查利用導數求函數的最值、研究函數的極值等知識,考查分類討論思想、轉化思想,考查學生綜合運用知識分析問題解決問題的能力,該題綜合性強,難度大,對能力要求較高.20、(1);(2).【解析】

(1)利用余弦定理和二倍角的正弦公式,化簡即可得出結果;(2)在中,由余弦定理得,在中結合正弦定理求出,從而得出,即可得出的解析式,最后結合斜率的幾何意義,即可求出的最小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論