




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆安徽省皖江聯盟高三第一次教學質量監測數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則集合()A. B. C. D.2.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]3.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.4.三棱錐中,側棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.5.已知函數,的圖象與直線的兩個相鄰交點的距離等于,則的一條對稱軸是()A. B. C. D.6.若是定義域為的奇函數,且,則A.的值域為 B.為周期函數,且6為其一個周期C.的圖像關于對稱 D.函數的零點有無窮多個7.復數,若復數在復平面內對應的點關于虛軸對稱,則等于()A. B. C. D.8.執行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1289.已知,則不等式的解集是()A. B. C. D.10.設分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.11.設函數的導函數,且滿足,若在中,,則()A. B. C. D.12.設集合,,若,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等比數列中,,則________.14.在平面五邊形中,,,,且.將五邊形沿對角線折起,使平面與平面所成的二面角為,則沿對角線折起后所得幾何體的外接球的表面積是______.15.在的展開式中,常數項為________.(用數字作答)16.某地區連續5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數據的標準差為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直棱柱中,底面為菱形,,,與相交于點,與相交于點.(1)求證:平面;(2)求直線與平面所成的角的正弦值.18.(12分)如圖,四邊形為菱形,為與的交點,平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長.19.(12分)已知點,直線與拋物線交于不同兩點、,直線、與拋物線的另一交點分別為兩點、,連接,點關于直線的對稱點為點,連接、.(1)證明:;(2)若的面積,求的取值范圍.20.(12分)已知函數,.(1)若函數在上單調遞減,且函數在上單調遞增,求實數的值;(2)求證:(,且).21.(12分)△的內角的對邊分別為,且.(1)求角的大小(2)若,△的面積,求△的周長.22.(10分)已知圓上有一動點,點的坐標為,四邊形為平行四邊形,線段的垂直平分線交于點.(Ⅰ)求點的軌跡的方程;(Ⅱ)過點作直線與曲線交于兩點,點的坐標為,直線與軸分別交于兩點,求證:線段的中點為定點,并求出面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎題.2、D【解析】
設,可得,構造()22,結合,可得,根據向量減法的模長不等式可得解.【詳解】設,則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.【點睛】本題考查了向量的運算綜合,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.3、B【解析】
根據題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質、拋物線的幾何性質,考查了學生的計算能力,屬于中檔題4、B【解析】由題,側棱底面,,,,則根據余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點睛:本題考查的知識點是球內接多面體,熟練掌握球的半徑公式是解答的關鍵.5、D【解析】
由題,得,由的圖象與直線的兩個相鄰交點的距離等于,可得最小正周期,從而求得,得到函數的解析式,又因為當時,,由此即可得到本題答案.【詳解】由題,得,因為的圖象與直線的兩個相鄰交點的距離等于,所以函數的最小正周期,則,所以,當時,,所以是函數的一條對稱軸,故選:D【點睛】本題主要考查利用和差公式恒等變形,以及考查三角函數的周期性和對稱性.6、D【解析】
運用函數的奇偶性定義,周期性定義,根據表達式判斷即可.【詳解】是定義域為的奇函數,則,,又,,即是以4為周期的函數,,所以函數的零點有無窮多個;因為,,令,則,即,所以的圖象關于對稱,由題意無法求出的值域,所以本題答案為D.【點睛】本題綜合考查了函數的性質,主要是抽象函數的性質,運用數學式子判斷得出結論是關鍵.7、A【解析】
先通過復數在復平面內對應的點關于虛軸對稱,得到,再利用復數的除法求解.【詳解】因為復數在復平面內對應的點關于虛軸對稱,且復數,所以所以故選:A【點睛】本題主要考查復數的基本運算和幾何意義,屬于基礎題.8、C【解析】
根據給定的程序框圖,逐次計算,結合判斷條件,即可求解.【詳解】由題意,執行上述程序框圖,可得第1次循環,滿足判斷條件,;第2次循環,滿足判斷條件,;第3次循環,滿足判斷條件,;第4次循環,滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,結合判斷條件求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.9、A【解析】
構造函數,通過分析的單調性和對稱性,求得不等式的解集.【詳解】構造函數,是單調遞增函數,且向左移動一個單位得到,的定義域為,且,所以為奇函數,圖像關于原點對稱,所以圖像關于對稱.不等式等價于,等價于,注意到,結合圖像關于對稱和單調遞增可知.所以不等式的解集是.故選:A【點睛】本小題主要考查根據函數的單調性和對稱性解不等式,屬于中檔題.10、A【解析】
由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.11、D【解析】
根據的結構形式,設,求導,則,在上是增函數,再根據在中,,得到,,利用余弦函數的單調性,得到,再利用的單調性求解.【詳解】設,所以,因為當時,,即,所以,在上是增函數,在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導數與函數的單調性,還考查了運算求解的能力,屬于中檔題.12、C【解析】
由得出,利用集合的包含關系可得出實數的取值范圍.【詳解】,且,,.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用集合的包含關系求參數,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
設等比數列的公比為,再根據題意用基本量法求解公比,進而利用等比數列項之間的關系得即可.【詳解】設等比數列的公比為.由,得,解得.又由,得.則.故答案為:1【點睛】本題主要考查了等比數列基本量的求解方法,屬于基礎題.14、【解析】
設的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,得到直線與的交點為幾何體外接球的球心,結合三角形的性質,求得球的半徑,利用表面積公式,即可求解.【詳解】設的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,則由球的性質可知,直線與的交點為幾何體外接球的球心,取的中點,連接,,由條件得,,連接,因為,從而,連接,則為所得幾何體外接球的半徑,在直角中,由,,可得,即外接球的半徑為,故所得幾何體外接球的表面積為.故答案為:.【點睛】本題主要考查了空間幾何體的結構特征,以及多面體的外接球的表面積的計算,其中解答中熟記空間幾何體的結構特征,求得外接球的半徑是解答的關鍵,著重考查了空間想象能力與運算求解能力,屬于中檔試題.15、【解析】
的展開式的通項為,取計算得到答案.【詳解】的展開式的通項為:,取得到常數項.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力.16、【解析】
先求出這組數據的平均數,再求出這組數據的方差,由此能求出該組數據的標準差.【詳解】解:某地區連續5天的最低氣溫(單位:依次為8,,,0,2,平均數為:,該組數據的方差為:,該組數據的標準差為1.故答案為:1.【點睛】本題考查一組數據據的標準差的求法,考查平均數、方差、標準差的定義等基礎知識,考查運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)要證明平面,只需證明,即可:(2)取中點,連,以為原點,分別為軸建立空間直角坐標系,分別求出與平面的法向量,再利用計算即可.【詳解】(1)∵底面為菱形,∵直棱柱平面.∵平面..平面;(2)如圖,取中點,連,以為原點,分別為軸建立如圖所示空間直角坐標系:,點,設平面的法向量為,,有,令,得又,設直線與平面所成的角為,所以故直線與平面所成的角的正弦值為.【點睛】本題考查線面垂直的證明以及向量法求線面角的正弦值,考查學生的運算求解能力,本題解題關鍵是正確寫出點的坐標.18、(1)證明見解析;(2)1【解析】
(1)由菱形的性質和線面垂直的性質,可得平面,再由面面垂直的判定定理,即可得證;(2)設,分別求得,和的長,運用三棱錐的體積公式,計算可得所求值.【詳解】(1)四邊形為菱形,,平面,,又,平面,又平面,平面平面;(2)設,在菱形中,由,可得,,,,在中,可得,由面,知,為直角三角形,可得,三棱錐的體積,,菱形的邊長為1.【點睛】本題考查面面垂直的判定,注意運用線面垂直轉化,考查三棱錐的體積的求法,考查化簡運算能力和推理能力,意在考查學生對這些知識的理解掌握水平.19、(1)見解析;(2).【解析】
(1)設點、,求出直線、的方程,與拋物線的方程聯立,求出點、的坐標,利用直線、的斜率相等證明出;(2)設點到直線、的距離分別為、,求出,利用相似得出,可得出的邊上的高,并利用弦長公式計算出,即可得出關于的表達式,結合不等式可解出實數的取值范圍.【詳解】(1)設點、,則,直線的方程為:,由,消去并整理得,由韋達定理可知,,,代入直線的方程,得,解得,同理,可得,,,,代入得,因此,;(2)設點到直線、的距離分別為、,則,由(1)知,,,,,,同理,得,,由,整理得,由韋達定理得,,,得,設點到直線的高為,則,,,,解得,因此,實數的取值范圍是.【點睛】本題考查直線與直線平行的證明,考查實數的取值范圍的求法,考查拋物線、直線方程、韋達定理、弦長公式、直線的斜率等基礎知識,考查運算求解能力,考查數形結合思想,是難題.20、(1)1;(2)見解析【解析】
(1)分別求得與的導函數,由導函數與單調性關系即可求得的值;(2)由(1)可知當時,,當時,,因而,構造,由對數運算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數在上單調遞減,∴,即在上恒成立,∴,又∵函數在上單調遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當時,函數在上為減函數,在上為增函數,而,∴當時,,當時,.∴∴即,∴.【點睛】本題考查了導數與函數單調性關系,放縮法在證明不等式中的應用,屬于難題.21、(I);(II).【解析】
試題分析:(I)由已知可得;(II)依題意得:的周長為.試題解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依題意得:∴,∴,∴,∴,∴的周長為.考點:1、解三角形;2、三角恒等變換.22、(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)先畫出圖形,結合垂直平分線和平行四邊形性質可得為一定值,,故可確定點軌跡為橢
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 育嬰師與教育心理學結合試題及答案
- 生理學試題選擇及答案
- 網絡規劃設計師的學習計劃制定試題及答案
- 2025黑龍江省安全員C證考試題庫
- 2025-2030嬰兒米粉行業市場現狀供需分析及重點企業投資評估規劃分析研究報告
- 2025-2030嬰兒乳液行業市場現狀供需分析及投資評估規劃分析研究報告
- 2025-2030女鞋行業市場發展分析及發展趨勢前景預測報告
- 2025-2030天津市小微金融行業市場發展現狀及發展趨勢與投資前景研究報告
- 2025-2030多囊卵巢綜合征(PCOS)治療學行業市場現狀供需分析及重點企業投資評估規劃分析研究報告
- 2025-2030復印紙行業市場現狀供需分析及重點企業投資評估規劃分析研究報告
- 螺紋的標注-PPT課件
- 語文園地五(識字加油站、我的發現)
- 《港口裝卸工藝》課件chap3 件雜貨
- 原材料進廠檢驗管理制度及檢驗規程
- 建設單位業主方工程項目管理流程圖
- 壓力管道檢驗計算案例
- 碎石擠密樁復合地基施工工法解讀
- 聚苯胺的結構和形貌表征分析結果
- 初中花城版八年級下冊音樂4.狂歡之歌(15張)ppt課件
- 常用標準波導和法蘭尺寸
- 改良ADA法脫硫原理
評論
0/150
提交評論