




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Complimentsof
Accelerating
AIwith
SyntheticData
GeneratingDataforAIProjects
KhaledElEmam
THELEADERINAICOMPUTING.
Signuptogetthe
latestAInewsstraight
toyourinbox.
SUBSCRIBE
AcceleratingAIwith SyntheticDataGeneratingDataforAIProjects
KhaledElEmam
Beijing·Boston·Farnham·Sebastopol·Tokyo
AcceleratingAIwithSyntheticData
byKhaledElEmam
Copyright?2020O’ReillyMedia,Inc.Allrightsreserved.
PrintedintheUnitedStatesofAmerica.
PublishedbyO’ReillyMedia,Inc.,1005GravensteinHighwayNorth,Sebastopol,CA95472.
O’Reillybooksmaybepurchasedforeducational,business,orsalespromotionaluse.Onlineeditionsarealsoavailableformosttitles
(
).Formoreinfor‐mation,contactourcorporate/institutionalsalesdepartment:800-998-9938or
corporate@
.
AcquisitionsEditor:JonathanHassell
DevelopmentEditor:MelissaPotter
ProductionEditor:DanielElfanbaum
Copyeditor:SharonWilkey
Proofreader:ShannonTurlington
InteriorDesigner:DavidFutato
CoverDesigner:KarenMontgomery
Illustrator:RebeccaDemarest
June2020:FirstEdition
RevisionHistoryfortheFirstEdition
2020-06-03:FirstRelease
TheO’ReillylogoisaregisteredtrademarkofO’ReillyMedia,Inc.AcceleratingAIwithSyntheticData,thecoverimage,andrelatedtradedressaretrademarksofO’ReillyMedia,Inc.
Theviewsexpressedinthisworkarethoseoftheauthor,anddonotrepresentthepublisher’sviews.Whilethepublisherandtheauthorhaveusedgoodfaitheffortstoensurethattheinformationandinstructionscontainedinthisworkareaccurate,thepublisherandtheauthordisclaimallresponsibilityforerrorsoromissions,includ‐ingwithoutlimitationresponsibilityfordamagesresultingfromtheuseoforreli‐anceonthiswork.Useoftheinformationandinstructionscontainedinthisworkisatyourownrisk.Ifanycodesamplesorothertechnologythisworkcontainsordescribesissubjecttoopensourcelicensesortheintellectualpropertyrightsofoth‐ers,itisyourresponsibilitytoensurethatyourusethereofcomplieswithsuchlicen‐sesand/orrights.
ThisworkispartofacollaborationbetweenO’ReillyandNVIDIA.Seeour
state‐
mentofeditorialindependence
.
978-1-492-04596-0
[LSI]
v
TableofContents
1.
DefiningSyntheticData 1
WhatIsSyntheticData?
2
TheBenefitsofSyntheticData
5
LearningtoTrustSyntheticData
9
OtherApproachestoAccessingData
11
GeneratingSyntheticDatafromRealData
12
Conclusions
15
2.
TheSynthesisProcess 17
DataSynthesisProjects
17
TheDataSynthesisPipeline
21
SynthesisProgramManagement
27
BestPracticesforImplementingDataSynthesis
28
Conclusions
30
3.
SyntheticDataCaseStudies 33
ManufacturingandDistribution
34
HealthCare
36
FinancialServices
43
Transportation
46
Conclusions
50
4.
TheFutureofDataSynthesis 51
CreatingaDataUtilityFramework
51
RemovingInformationfromSyntheticData
52
vi|TableofContents
UsingDataWatermarking
53
GeneratingSynthesisfromSimulators
54
Conclusions
55
CHAPTER1
1
DefiningSyntheticData
Interestinsyntheticdatahasbeengrowingquiterapidlyoverthelastfewyears.Thishasbeendrivenbytwosimultaneoustrends.Thefirstisthedemandforlargeamountsofdatatotrainandbuildarti-ficialintelligenceandmachinelearning(AIML)models.Thesecondisrecentworkthathasdemonstratedeffectivemethodstogeneratehigh-qualitysyntheticdata.Bothhaveresultedintherecognitionthatsyntheticdatacansolvesomedifficultproblemsquiteeffec-tively,especiallywithintheAIMLcommunity.Groupsandbusi-nesseswithincompanieslikeNVIDIA,IBM,andAlphabet,aswellasagenciessuchastheUSCensusBureau,haveadopteddifferenttypesofdatasynthesistosupportmodelbuilding,applicationdevel-opment,anddatadissemination.
Thisreportprovidesageneraloverviewofsyntheticdatageneration,withafocusonthebusinessvalueandusecases,andhigh-levelcov-erageoftechniquesandimplementationpractices.Weaimtoanswerthequestionsthatabusinessreaderwouldtypicallyask(andhastypicallyasked),butatthesametimeprovidesomedirectiontoanalyticsleadershipseekingtounderstandtheoptionsavailableandwheretolooktogetstarted.
WeshowhowsyntheticdatacanaccelerateAIMLprojects.Someproblemsthatcanbetackledbyusingsyntheticdatawouldbetoocostlyordangerous(e.g.,inthecaseoftrainingmodelscontrollingautonomousvehicles)tosolveusingmoretraditionalmethods,orsimplycannotbedoneotherwise.
2|Chapter1:DefiningSyntheticData
AIMLprojectsrunindifferentindustries,andthemultipleindustryusecasesthatweincludeinthisreportareintendedtogiveyouaflavorofthebroadapplicationsofdatasynthesis.WedefineanAIMLprojectquitebroadlyaswell,toinclude,forexample,thedevelopmentofsoftwareapplicationsthathaveAIMLcomponents.Thereportisdividedintofourchapters.Thisintroductorychaptercoversbasicconceptsandpresentsthecaseforsyntheticdata.
Chap‐
ter2
presentsthedatasynthesisprocessandpipelines,scalingimplementationintheenterprise,andbestpractices.Aseriesofindustry-specificcasestudiesfollowin
Chapter3
.
Chapter4
isforward-lookingandconsiderswherethistechnologyisheaded.
Inthischapter,westartbydefiningthetypesofsyntheticdata.Thisisfollowedbyadescriptionofthebenefitsofusingsyntheticdata—thetypesofproblemsthatdatasynthesiscansolve.Giventherecentadoptionofthisapproachintopractice,buildingtrustinanalysisresultsfromsyntheticdataisimportant.Wethereforealsopresentexamplessupportingtheutilityofsyntheticdataanddiscussmeth‐odstobuildtrust.
Alternativestodatasynthesisexist,andwepresentthesenextwithanassessmentofstrengthsandweaknesses.Thischapterthencloseswithanoverviewofmethodsforsyntheticdatageneration.
WhatIsSyntheticData?
Ataconceptuallevel,syntheticdataisnotrealdatabutisdatathathasbeengeneratedfromrealdataandthathasthesamestatisticalpropertiesastherealdata.Thismeansthatananalystwhoworkswithasyntheticdatasetshouldgetanalysisresultsthataresimilartothosetheywouldgetwithrealdata.Thedegreetowhichasyn‐theticdatasetisanaccurateproxyforrealdataisameasureofutil-ity.Furthermore,werefertotheprocessofgeneratingsyntheticdataassynthesis.
Datainthiscontextcanmeandifferentthings.Forexample,datacanbestructureddata(i.e.,rowsandcolumns),asonewouldseeinarelationaldatabase.Datacanalsobeunstructuredtext,suchasdoc‐tors’notes,transcriptsofconversationsamongpeopleorwithdigitalassistants,oronlineinteractionsbyemailorchat.Furthermore,images,videos,audio,andvirtualenvironmentsarealsotypesofdatathatcanbesynthesized.Wehaveseenexamplesoffakeimages
WhatIsSyntheticData?|3
inthemachinelearningliterature;forinstance,realisticfacesofpeoplewhodonotexistintherealworldcanbecreated,andyoucan
viewtheresults
online.
Syntheticdataisdividedintotwotypes,basedonwhetheritisgen‐eratedfromactualdatasetsornot.
Thefirsttypeissynthesizedfromrealdatasets.Theanalystwillhavesomerealdatasetsandthenbuildamodeltocapturethedistribu‐tionsandstructureofthatrealdata.Here,structuremeansthemul‐tivariaterelationshipsandinteractionsinthedata.Thenthesyntheticdataissampledorgeneratedfromthatmodel.Ifthemodelisagoodrepresentationoftherealdata,thesyntheticdatawillhavesimilarstatisticalpropertiesastherealdata.
Forexample,adatasciencegroupspecializinginunderstandingcustomerbehaviorswouldneedlargeamountsofdatatobuilditsmodels.Butbecauseofprivacyorotherconcerns,theprocessforgettingaccesstothatcustomerdataisslowanddoesnotprovidegoodenoughdatawhenitdoesarrivebecauseofextensivemaskingandredactionofinformation.Instead,asyntheticversionoftheproductiondatasetscanbeprovidedtotheanalystsforbuildingtheirmodels.Thesynthesizeddatawillhavefewerconstraintsputonitsuseandwouldallowthemtoprogressmorerapidly.
Thesecondtypeofsyntheticdataisnotgeneratedfromrealdata.Itiscreatedbyusingexistingmodelsorbyusingbackgroundknowl‐edgeoftheanalyst.Theseexistingmodelscanbestatisticalmodelsofaprocess(forexample,developedthroughsurveysorotherdatacollectionmechanisms)ortheycanbesimulations.Simulationscanbecreated,forinstance,bygamingenginesthatcreatesimulated(andsynthetic)imagesofscenesorobjects,orbysimulationenginesthatgenerateshopperdatawithparticularcharacteristics(say,ageandgender)ofpeoplewhowalkpastthesiteofaprospectivestoreatdifferenttimesoftheday.
Backgroundknowledgecanbe,forexample,amodelofhowafinancialmarketbehavesbasedontextbookdescriptionsorbasedonthebehaviorsofstockpricesundervarioushistoricalconditions,oritcanbeknowledgeofthestatisticaldistributionofhumantrafficinastorebasedonyearsofexperience.Insuchacase,itisrelativelystraightforwardtocreateamodelandsamplefromittogeneratesyntheticdata.Iftheanalyst’sknowledgeoftheprocessisaccurate,thesyntheticdatawillbehaveinamannerthatisconsistentwith
4|Chapter1:DefiningSyntheticData
real-worlddata.Ofcourse,thisworksonlywhenthephenomenonofinterestistrulywellunderstood.
Asafinalexample,whenaprocessisnewornotwellunderstoodbytheanalystandthereisnorealhistoricaldatatouse,ananalystcanmakesomesimpleassumptionsaboutthedistributionsandcorrela-tionsamongthevariablesinvolvedintheprocess.Forexample,theanalystcanmakeasimplifyingassumptionthatthevariableshavenormaldistributionsand“medium”correlationsamongthem,andcreatedatathatway.Thistypeofdatawilllikelynothavethesamepropertiesasrealdatabutcanstillbeusefulforsomepurposes,suchasdebugginganRdataanalysisprogramorforsometypesofper-formancetestingofsoftwareapplications.
Forsomeusecases,havinghighutilitywillmatterquiteabit.Inothercases,mediumorevenlowutilitymaybeacceptable.Forexample,iftheobjectiveistobuildAIMLmodelstopredictcus-tomerbehaviorandmakemarketingdecisionsbasedonthat,highutilitywillbeimportant.Ontheotherhand,iftheobjectiveistoseeifyoursoftwarecanhandlealargevolumeoftransactions,thedatautilityexpectationswillbeconsiderablyless.Therefore,understand-ingwhatdata,models,simulators,andknowledgeexistaswellastherequirementsfordatautilitywilldrivethespecificapproachtouseforgeneratingthesyntheticdata.
Table1-1
providesasummaryofthesyntheticdatatypes.
Table1-1.Typesofdatasynthesiswiththeirutilityandprivacyimplications
Typeofsyntheticdata
Utility
Generatedfromreal(nonpublic)datasetsGeneratedfromrealpublicdata
Canbequitehigh
Canbehigh,althoughlimitationsexistbecause
publicdatatendstobede-identifiedoraggregated
Generatedfromanexistingmodelofa
process,whichcanalsoberepresentedinasimulationengine
Basedonanalystknowledge
Willdependonthefidelityoftheexistinggeneratingmodel
Willdependonhowwelltheanalystknowsthedomainandthecomplexityofthephenomenon
Generatedfromgenericassumptionsnotspecifictothephenomenon
Willlikelybelow
TheBenefitsofSyntheticData|5
Nowthatyouhaveanunderstandingofthetypesofsyntheticdata,wewilllookatthebenefitsofdatasynthesisoverallandforsomeofthesedatatypesspecifically.
TheBenefitsofSyntheticData
Inthissection,wepresentseveralwaysthatdatasynthesiscansolvepracticalproblemswithAIMLprojects.Thebenefitsofsyntheticdatacanbedramatic.Itcanmakeimpossibleprojectsdoable,signif‐icantlyaccelerateAIMLinitiatives,orresultinmaterialimprove‐mentintheoutcomesofAIMLprojects.
ImprovingDataAccess
DataaccessiscriticaltoAIMLprojects.Thedataisneededtotrainandvalidatemodels.Morebroadly,dataisalsoneededforevaluat‐ingAIMLtechnologiesthathavebeendevelopedbyothers,aswellasfortestingAIMLsoftwareapplicationsorapplicationsthatincor‐porateAIMLmodels.
Typically,dataiscollectedforaparticularpurposewiththeconsentoftheindividual;forexample,forparticipatinginawebinarorforparticipatinginaclinicalresearchstudy.Ifyouwanttousethatsamedataforadifferentpurpose,suchasforbuildingamodeltopredictwhatkindofpersonislikelytosignupforawebinarorwhowouldparticipateinastudy,thenthatisconsideredasecondarypurpose.
Accesstodataforsecondaryanalysisisbecomingproblematic.TheUSGovernmentAccountabilityOffice
1
andtheMcKinseyGlobalInstitute
2
bothnotethataccessingdataforbuildingandtestingAIMLmodelsisachallengefortheiradoptionmorebroadly.ADeloitteanalysisconcludedthatdataaccessissuesarerankedinthetopthreechallengesfacedbycompanieswhenimplementingAI.
3
ArecentsurveyfromMITTechnologyReviewreportedthatalmost
1GovernmentAccountabilityOffice,“ArtificialIntelligence:EmergingOpportunities,Challenges,andImplications,”GAO-18-142SP(March2018).
https://oreil.ly/Cpyli
.
2McKinseyGlobalInstitute,“ArtificialIntelligence:TheNextDigitalFrontier?”(June2017).
https://oreil.ly/zJ8oZ
.
3DeloitteInsights,“StateofAIintheEnterprise,2ndEdition”(2018).
https://oreil.ly/
l07tJ
.
6|Chapter1:DefiningSyntheticData
halfoftherespondentsidentifieddataavailabilityasaconstrainttotheuseofAIwiththeircompany.
4
Atthesametime,thepublicisgettinguneasyabouthowtheirdataisusedandshared,andprivacylawsarebecomingmorestrict.ArecentsurveybyO’Reillyhighligh‐tedtheprivacyconcernsofcompaniesadoptingmachinelearningmodels,withmorethanhalfofcompaniesexperiencedwithAIMLcheckingforprivacyissues.
5
InthesameMITsurveymentionedpreviously,64%ofrespondentsnotethat“changesinregulationorgreaterregulatoryclarityondatasharing”isadevelopmentthatwouldbemostlikelytoleadtomoredatasharing.
Contemporaryprivacyregulations,suchastheUSHealthInsurancePortabilityandAccountabilityAct(HIPAA)andtheGeneralDataProtectionRegulation(GDPR)inEurope,imposeconstraintsorrequirementstousingpersonaldataforasecondarypurpose.Anexampleisarequirementtogetanadditionalconsentorauthoriza‐tionfromindividuals.Inmanycases,thisisnotpracticalandcanintroducebiasintothedatabecauseconsentersandnonconsentersdifferinimportantcharacteristics.
6
Datasynthesiscangivetheanalyst,ratherefficientlyandatscale,realisticdatatoworkwith.Giventhatsyntheticdatawouldnotbeconsideredidentifiablepersonaldata,privacyregulationswouldnotapply,andobligationsofadditionalconsenttousethedataforsec‐ondarypurposeswouldnotberequired.
7
ImprovingDataQuality
Giventhedifficultyingettingaccesstodata,manyanalyststrytojustuseopensourceorpublicdatasets.Thesecanbeagoodstartingpoint,buttheylackdiversityandareoftennotwellmatchedtotheproblemsthatthemodelsareintendedtosolve.Furthermore,open
4MITTechnologyReviewInsights,“TheGlobalAIAgenda:Promise,Reality,andaFutureofDataSharing”(March2020).
https://oreil.ly/FHg87
5BenLoricaandPacoNathan,TheStateofMachineLearningAdoptionintheEnterprise(O’Reilly).
6KhaledElEmam,etal.,“AReviewofEvidenceonConsentBiasinResearch,”AmericanJournalofBioethics13,no.4(2013):42–44.
https://oreil.ly/SiG2N.
7However,oneshouldfollowgoodpractices,suchasprovidingnoticetoindividualsabouthowthedataisusedanddisclosed,andhavingethicsoversightontheusesofdataandAIMLmodels.
TheBenefitsofSyntheticData|7
datamaylacksufficientheterogeneityforrobusttrainingofmodels.Forexample,theymaynotcapturerarecaseswellenough.
Sometimestherealdatathatexistsisnotlabeled.Labelingalargenumberofexamplesforsupervisedlearningtaskscanbetime-consuming,andmanuallabelingiserrorprone.Again,syntheticlabeleddatacanbegeneratedtoacceleratemodeldevelopment.Thesynthesisprocesscanensurehighaccuracyinthelabeling.
UsingSyntheticDataforExploratoryAnalysis
Analystscanusesyntheticdatamodelstovalidatetheirassumptionsanddemonstratethekindofresultsthatcanbeobtainedwiththeirmodels.Inthisway,thesyntheticdatacanbeusedinanexploratorymanner.Knowingthattheyhaveinterestingandusefulresults,theanalystscanthengothroughthemorecomplexprocessofgettingtherealdata(eitherraworde-identified)tobuildthefinalversionsoftheirmodels.
Forexample,ananalystwhoisaresearchercouldusetheirexplora-torymodelsonsyntheticdatatothenapplyforfundingtogetaccesstotherealdata,whichmayrequireafullprotocolandmultiplelev-elsofapprovals.Insuchaninstance,workwithsyntheticdatathatdoesnotproducegoodmodelsoractionableresultswouldstillbebeneficialbecauseanalystswouldhaveavoidedtheextraeffortrequiredtogetaccesstotherealdataforapotentiallyfutileanalysis.Anothervaluableuseofsyntheticdataisfortraininganinitialmodelbeforetherealdataisaccessible.Thenwhentheanalystgetstherealdata,theycanusethetrainedmodelasastartingpointfortrainingwiththerealdata.Thiscansignificantlyexpeditethecon-vergenceoftherealdatamodel(hencereducingcomputetime),andcanpotentiallyresultinamoreaccuratemodel.Thisisanexampleofusingsyntheticdatafortransferlearning.
UsingSyntheticDataforFullAnalysis
Avalidationservercanbedeployedtoruntheanalysiscodethatworkedonthesyntheticdataontherealdata.Ananalystwouldper-formalloftheiranalysisonthesyntheticdata,andthensubmitthecodethatworkedonthesyntheticdatatoasecurevalidationserverthathasaccesstotherealdata,asillustratedin
Figure1-1
.Becausethesyntheticdatawouldbestructuredinthesamewayastheorigi-naldata,thecodethatworkedonthesyntheticdatashouldwork
8|Chapter1:DefiningSyntheticData
directlyontherealdata.Theresultsarethensentbacktotheanalysttoconfirmtheirmodels.
Thisisnotintendedtobeaninteractivesystem.Theoutputfromthevalidationserverneedstobecheckedtoensurethatnorevealinginformationisbeingsentoutbythecodeoutput.Therefore,itisintendedtobeusedonceortwicebytheanalystattheveryendoftheiranalysis.Itdoesprovideawaytoprovideassurancetotheana-lyststhatthesynthesisresultsarereplicableontherealdata.
Figure1-1.Thesetupforavalidationserverusedtoexecutefinalcodethatproducedresultsonthesyntheticdata(adaptedfromReplica
AnalyticsLtd.,withpermission)
Whentheutilityofthesyntheticdataishighenough,theanalystscangetsimilarresultswiththesyntheticdataastheywouldhavewiththerealdata,andnovalidationserverisrequired.Insuchacase,thesyntheticdataplaystheroleofaproxyfortherealdata.Thisscenarioisplayingoutinmoreandmoreusecases:assynthesismethodsimproveovertime,thisproxyoutcomeisgoingtobecomemorecommon.
ReplacingRealDataThatDoesNotExist
Insomesituations,realdatamaynotexist.Theanalystmaybetry-ingtomodelsomethingcompletelynew,orthecreationorcollec-tionofarealdatasetfromscratchmaybecostprohibitiveorimpractical.Synthesizeddatacancoveredgeorrarecasesthataredifficult,impractical,orunethicaltocollectintherealworld.
Syntheticdatacanalsobeusedtoincreasetheheterogeneityofatrainingdataset,whichcanresultinamorerobustAIMLmodel.Forexample,unusualcasesinwhichdatadoesnotexistorisdifficulttocollectcanbesynthesizedandincludedinthetrainingdataset.In
LearningtoTrustSyntheticData|9
thatcase,theutilityofthesyntheticdataismeasuredintherobust‐nessincrementitgivestotheAIMLmodels.
Wehaveseenthatsyntheticdatacanplayakeyroleinsolvingaser‐iesofpracticalproblems.Onecriticalfactorfortheadoptionofdatasynthesis,however,istrustinthegenerateddata.Ithaslongbeenrecognizedthathighdatautilitywillbeneededforthebroadadop‐tionofdatasynthesismethods.
8
Thisisthetopicweturntonext.
LearningtoTrustSyntheticData
Initialinterestinsyntheticdatastartedintheearly’90swithpropos‐alstousemultipleimputationmethodstogeneratesyntheticdata.Imputationingeneralistheprocessofreplacingmissingdatavalueswithestimates.Missingdatacanoccur,forexample,inasurveyifsomerespondentsdonotcompleteaquestionnaire.
Accurateimputeddatarequirestheanalysttobuildamodelofthephenomenonofinterestbyusingtheavailabledataandthenusethatmodeltoestimatewhattheimputedvalueshouldbe.Tobuildavalidimputationmodel,theanalystneedstoknowhowthedatawillbeeventuallyused.Withmultipleimputation,youcreatemultipleimputedvaluestocapturetheuncertaintyintheseestimatedvalues.Thisprocesscanworkreasonablywellifyouknowhowthedatawillbeused.
Inthecontextofusingimputationfordatasynthesis,therealdataisaugmentedwithsyntheticdatabyusingthesametypeofimputationtechniques.Insuchacase,therealdataisusedtobuildanimputa‐tionmodelthatisthenusedtosynthesizenewdata.
Thechallengeisthatifyourimputationmodelsaredifferentfromtheeventualusesofthedata,theimputedvaluesmaynotbeveryreflectiveoftherealvalues,andthiswillintroduceerrorsinthedata.Thisriskofbuildingthewrongsynthesismodelhasledtohistoriccautionintheapplicationofsyntheticdata.
Morerecently,statisticalmachinelearningmodelshavebeenusedfordatasynthesis.Theadvantageofthesemodelsisthattheycancapturethedistributionsandcomplexrelationshipsamongthe
8JeromeP.Reiter,“NewApproachestoDataDissemination:AGlimpseintotheFuture(?),”CHANCE17,no.3(June2004):11–15.
https://oreil.ly/x89Vd
.
10|Chapter1:DefiningSyntheticData
variablesquitewell.Ineffect,theydiscovertheunderlyingmodelinthedataratherthanhavingthatmodelprespecifiedbytheanalyst.Andnowwithdeeplearningdatasynthesis,thesemodelscanbequiteaccurateinthattheycancapturemuchofthesignalinthedata—evensubtlesignals.
Therefore,wearegettingclosertothepointwherethegenerativemodelsavailabletodayareproducingdatasetsthatarebecomingquitegoodproxiesforrealdata.Therearealsowaystoassesstheutilityofsyntheticdatamoreobjectively.
Forexample,wecancomparetheanalysisresultsfromsyntheticdatawiththeanalysisresultsfromtherealdata.Ifwedonotknowwhatanalysiswillbeperformedonthesyntheticdata,arangeofpossibleanalysiscanbetriedbasedonknownexamplesofusesofthatdata.Oran“allmodels”evaluationcanbeperformedinwhichallpossiblemodelsarebuiltfromtherealandsyntheticdatasetsandcompared.
9
TheUSCensusBureauhas,atthetimeofwriting,decidedtolever‐agesyntheticdataforsomeofitsmostheavilyusedpublicdatasets,the2020decennialcensusdata.Foritstabulardatadisseminations,theagencywillcreateasyntheticdatasetfromthecollectedindividual-levelcensusdataandthenproducethepublictabulationsfromthatsyntheticdataset.Amixtureofformalandnonformalmethodswillbeusedinthesynthesisprocess.
10
Weprovideanover‐viewofthesynthesisprocessin
Chapter2
.This,arguably,demon‐stratesthelarge-scaleadoptionofdatasynthesisforoneofthemostcriticalandheavilyuseddatasetsavailabletoday.
Asorganizationsbuildtrustinsyntheticdata,theywillmovefromexploratoryanalysisusecases,totheuseofavalidationserver,andthentousingsyntheticdataasaproxyforrealdata.
Alegitimatequestioniswhataretheotherapproachesthatareavail‐abletodaytoaccessdataforAIMLpurposes,inadditiontodata
9AreviewofutilityassessmentapproachescanbefoundinKhaledElEmam,“Seven
WaystoEvaluat
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年學(xué)年工作方案
- 2025年扶貧單位工作方案
- 2025年初三個人教學(xué)工作方案演講稿
- 重慶城市管理職業(yè)學(xué)院《應(yīng)用中子物理學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東省德州市八校2025屆下學(xué)期初三第三次質(zhì)量考評物理試題含解析
- 湖南農(nóng)業(yè)大學(xué)《藥物分析A實(shí)驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年遼寧省葫蘆島市第一中學(xué)高三第一次診斷性考試生物試題文試題含解析
- 微課程的設(shè)計與應(yīng)用
- 江西省宜春九中2025屆高三廣東六校高考模擬考試物理試題及參考答案含解析
- 滑膜炎超聲診斷
- 2024年山東省濟(jì)南市市中區(qū)九年級中考二模數(shù)學(xué)試題 (原卷版+解析版)
- 生物醫(yī)學(xué)體系的確立與發(fā)展
- 社會心理學(xué)(西安交通大學(xué))智慧樹知到期末考試答案2024年
- 行政管理學(xué)#-形考任務(wù)4-國開(ZJ)-參考資料
- 2024中國餐飲加盟行業(yè)白皮書-ccfax美團(tuán)-202404
- 2024年山東省濟(jì)南市萊蕪區(qū)中考一模語文試卷
- 用工審批單(模板)
- 極光大數(shù)據(jù):王者榮耀研究報告
- 【基于層次分析法的極兔快遞配送網(wǎng)點(diǎn)選址的案例分析10000字(論文)】
- 古詩詞誦讀《客至》高二語文課件(統(tǒng)編版選擇性必修下冊)
- 【我國“獨(dú)角獸”企業(yè)的發(fā)展問題及優(yōu)化建議分析-以字節(jié)跳動為例16000字(論文)】
評論
0/150
提交評論