【OReilly】如何利用合成數(shù)據(jù)推進(jìn)人工智能和機(jī)器學(xué)習(xí)_第1頁
【OReilly】如何利用合成數(shù)據(jù)推進(jìn)人工智能和機(jī)器學(xué)習(xí)_第2頁
【OReilly】如何利用合成數(shù)據(jù)推進(jìn)人工智能和機(jī)器學(xué)習(xí)_第3頁
【OReilly】如何利用合成數(shù)據(jù)推進(jìn)人工智能和機(jī)器學(xué)習(xí)_第4頁
【OReilly】如何利用合成數(shù)據(jù)推進(jìn)人工智能和機(jī)器學(xué)習(xí)_第5頁
已閱讀5頁,還剩106頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

Complimentsof

Accelerating

AIwith

SyntheticData

GeneratingDataforAIProjects

KhaledElEmam

THELEADERINAICOMPUTING.

Signuptogetthe

latestAInewsstraight

toyourinbox.

SUBSCRIBE

AcceleratingAIwith SyntheticDataGeneratingDataforAIProjects

KhaledElEmam

Beijing·Boston·Farnham·Sebastopol·Tokyo

AcceleratingAIwithSyntheticData

byKhaledElEmam

Copyright?2020O’ReillyMedia,Inc.Allrightsreserved.

PrintedintheUnitedStatesofAmerica.

PublishedbyO’ReillyMedia,Inc.,1005GravensteinHighwayNorth,Sebastopol,CA95472.

O’Reillybooksmaybepurchasedforeducational,business,orsalespromotionaluse.Onlineeditionsarealsoavailableformosttitles

(

).Formoreinfor‐mation,contactourcorporate/institutionalsalesdepartment:800-998-9938or

corporate@

.

AcquisitionsEditor:JonathanHassell

DevelopmentEditor:MelissaPotter

ProductionEditor:DanielElfanbaum

Copyeditor:SharonWilkey

Proofreader:ShannonTurlington

InteriorDesigner:DavidFutato

CoverDesigner:KarenMontgomery

Illustrator:RebeccaDemarest

June2020:FirstEdition

RevisionHistoryfortheFirstEdition

2020-06-03:FirstRelease

TheO’ReillylogoisaregisteredtrademarkofO’ReillyMedia,Inc.AcceleratingAIwithSyntheticData,thecoverimage,andrelatedtradedressaretrademarksofO’ReillyMedia,Inc.

Theviewsexpressedinthisworkarethoseoftheauthor,anddonotrepresentthepublisher’sviews.Whilethepublisherandtheauthorhaveusedgoodfaitheffortstoensurethattheinformationandinstructionscontainedinthisworkareaccurate,thepublisherandtheauthordisclaimallresponsibilityforerrorsoromissions,includ‐ingwithoutlimitationresponsibilityfordamagesresultingfromtheuseoforreli‐anceonthiswork.Useoftheinformationandinstructionscontainedinthisworkisatyourownrisk.Ifanycodesamplesorothertechnologythisworkcontainsordescribesissubjecttoopensourcelicensesortheintellectualpropertyrightsofoth‐ers,itisyourresponsibilitytoensurethatyourusethereofcomplieswithsuchlicen‐sesand/orrights.

ThisworkispartofacollaborationbetweenO’ReillyandNVIDIA.Seeour

state‐

mentofeditorialindependence

.

978-1-492-04596-0

[LSI]

v

TableofContents

1.

DefiningSyntheticData 1

WhatIsSyntheticData?

2

TheBenefitsofSyntheticData

5

LearningtoTrustSyntheticData

9

OtherApproachestoAccessingData

11

GeneratingSyntheticDatafromRealData

12

Conclusions

15

2.

TheSynthesisProcess 17

DataSynthesisProjects

17

TheDataSynthesisPipeline

21

SynthesisProgramManagement

27

BestPracticesforImplementingDataSynthesis

28

Conclusions

30

3.

SyntheticDataCaseStudies 33

ManufacturingandDistribution

34

HealthCare

36

FinancialServices

43

Transportation

46

Conclusions

50

4.

TheFutureofDataSynthesis 51

CreatingaDataUtilityFramework

51

RemovingInformationfromSyntheticData

52

vi|TableofContents

UsingDataWatermarking

53

GeneratingSynthesisfromSimulators

54

Conclusions

55

CHAPTER1

1

DefiningSyntheticData

Interestinsyntheticdatahasbeengrowingquiterapidlyoverthelastfewyears.Thishasbeendrivenbytwosimultaneoustrends.Thefirstisthedemandforlargeamountsofdatatotrainandbuildarti-ficialintelligenceandmachinelearning(AIML)models.Thesecondisrecentworkthathasdemonstratedeffectivemethodstogeneratehigh-qualitysyntheticdata.Bothhaveresultedintherecognitionthatsyntheticdatacansolvesomedifficultproblemsquiteeffec-tively,especiallywithintheAIMLcommunity.Groupsandbusi-nesseswithincompanieslikeNVIDIA,IBM,andAlphabet,aswellasagenciessuchastheUSCensusBureau,haveadopteddifferenttypesofdatasynthesistosupportmodelbuilding,applicationdevel-opment,anddatadissemination.

Thisreportprovidesageneraloverviewofsyntheticdatageneration,withafocusonthebusinessvalueandusecases,andhigh-levelcov-erageoftechniquesandimplementationpractices.Weaimtoanswerthequestionsthatabusinessreaderwouldtypicallyask(andhastypicallyasked),butatthesametimeprovidesomedirectiontoanalyticsleadershipseekingtounderstandtheoptionsavailableandwheretolooktogetstarted.

WeshowhowsyntheticdatacanaccelerateAIMLprojects.Someproblemsthatcanbetackledbyusingsyntheticdatawouldbetoocostlyordangerous(e.g.,inthecaseoftrainingmodelscontrollingautonomousvehicles)tosolveusingmoretraditionalmethods,orsimplycannotbedoneotherwise.

2|Chapter1:DefiningSyntheticData

AIMLprojectsrunindifferentindustries,andthemultipleindustryusecasesthatweincludeinthisreportareintendedtogiveyouaflavorofthebroadapplicationsofdatasynthesis.WedefineanAIMLprojectquitebroadlyaswell,toinclude,forexample,thedevelopmentofsoftwareapplicationsthathaveAIMLcomponents.Thereportisdividedintofourchapters.Thisintroductorychaptercoversbasicconceptsandpresentsthecaseforsyntheticdata.

Chap‐

ter2

presentsthedatasynthesisprocessandpipelines,scalingimplementationintheenterprise,andbestpractices.Aseriesofindustry-specificcasestudiesfollowin

Chapter3

.

Chapter4

isforward-lookingandconsiderswherethistechnologyisheaded.

Inthischapter,westartbydefiningthetypesofsyntheticdata.Thisisfollowedbyadescriptionofthebenefitsofusingsyntheticdata—thetypesofproblemsthatdatasynthesiscansolve.Giventherecentadoptionofthisapproachintopractice,buildingtrustinanalysisresultsfromsyntheticdataisimportant.Wethereforealsopresentexamplessupportingtheutilityofsyntheticdataanddiscussmeth‐odstobuildtrust.

Alternativestodatasynthesisexist,andwepresentthesenextwithanassessmentofstrengthsandweaknesses.Thischapterthencloseswithanoverviewofmethodsforsyntheticdatageneration.

WhatIsSyntheticData?

Ataconceptuallevel,syntheticdataisnotrealdatabutisdatathathasbeengeneratedfromrealdataandthathasthesamestatisticalpropertiesastherealdata.Thismeansthatananalystwhoworkswithasyntheticdatasetshouldgetanalysisresultsthataresimilartothosetheywouldgetwithrealdata.Thedegreetowhichasyn‐theticdatasetisanaccurateproxyforrealdataisameasureofutil-ity.Furthermore,werefertotheprocessofgeneratingsyntheticdataassynthesis.

Datainthiscontextcanmeandifferentthings.Forexample,datacanbestructureddata(i.e.,rowsandcolumns),asonewouldseeinarelationaldatabase.Datacanalsobeunstructuredtext,suchasdoc‐tors’notes,transcriptsofconversationsamongpeopleorwithdigitalassistants,oronlineinteractionsbyemailorchat.Furthermore,images,videos,audio,andvirtualenvironmentsarealsotypesofdatathatcanbesynthesized.Wehaveseenexamplesoffakeimages

WhatIsSyntheticData?|3

inthemachinelearningliterature;forinstance,realisticfacesofpeoplewhodonotexistintherealworldcanbecreated,andyoucan

viewtheresults

online.

Syntheticdataisdividedintotwotypes,basedonwhetheritisgen‐eratedfromactualdatasetsornot.

Thefirsttypeissynthesizedfromrealdatasets.Theanalystwillhavesomerealdatasetsandthenbuildamodeltocapturethedistribu‐tionsandstructureofthatrealdata.Here,structuremeansthemul‐tivariaterelationshipsandinteractionsinthedata.Thenthesyntheticdataissampledorgeneratedfromthatmodel.Ifthemodelisagoodrepresentationoftherealdata,thesyntheticdatawillhavesimilarstatisticalpropertiesastherealdata.

Forexample,adatasciencegroupspecializinginunderstandingcustomerbehaviorswouldneedlargeamountsofdatatobuilditsmodels.Butbecauseofprivacyorotherconcerns,theprocessforgettingaccesstothatcustomerdataisslowanddoesnotprovidegoodenoughdatawhenitdoesarrivebecauseofextensivemaskingandredactionofinformation.Instead,asyntheticversionoftheproductiondatasetscanbeprovidedtotheanalystsforbuildingtheirmodels.Thesynthesizeddatawillhavefewerconstraintsputonitsuseandwouldallowthemtoprogressmorerapidly.

Thesecondtypeofsyntheticdataisnotgeneratedfromrealdata.Itiscreatedbyusingexistingmodelsorbyusingbackgroundknowl‐edgeoftheanalyst.Theseexistingmodelscanbestatisticalmodelsofaprocess(forexample,developedthroughsurveysorotherdatacollectionmechanisms)ortheycanbesimulations.Simulationscanbecreated,forinstance,bygamingenginesthatcreatesimulated(andsynthetic)imagesofscenesorobjects,orbysimulationenginesthatgenerateshopperdatawithparticularcharacteristics(say,ageandgender)ofpeoplewhowalkpastthesiteofaprospectivestoreatdifferenttimesoftheday.

Backgroundknowledgecanbe,forexample,amodelofhowafinancialmarketbehavesbasedontextbookdescriptionsorbasedonthebehaviorsofstockpricesundervarioushistoricalconditions,oritcanbeknowledgeofthestatisticaldistributionofhumantrafficinastorebasedonyearsofexperience.Insuchacase,itisrelativelystraightforwardtocreateamodelandsamplefromittogeneratesyntheticdata.Iftheanalyst’sknowledgeoftheprocessisaccurate,thesyntheticdatawillbehaveinamannerthatisconsistentwith

4|Chapter1:DefiningSyntheticData

real-worlddata.Ofcourse,thisworksonlywhenthephenomenonofinterestistrulywellunderstood.

Asafinalexample,whenaprocessisnewornotwellunderstoodbytheanalystandthereisnorealhistoricaldatatouse,ananalystcanmakesomesimpleassumptionsaboutthedistributionsandcorrela-tionsamongthevariablesinvolvedintheprocess.Forexample,theanalystcanmakeasimplifyingassumptionthatthevariableshavenormaldistributionsand“medium”correlationsamongthem,andcreatedatathatway.Thistypeofdatawilllikelynothavethesamepropertiesasrealdatabutcanstillbeusefulforsomepurposes,suchasdebugginganRdataanalysisprogramorforsometypesofper-formancetestingofsoftwareapplications.

Forsomeusecases,havinghighutilitywillmatterquiteabit.Inothercases,mediumorevenlowutilitymaybeacceptable.Forexample,iftheobjectiveistobuildAIMLmodelstopredictcus-tomerbehaviorandmakemarketingdecisionsbasedonthat,highutilitywillbeimportant.Ontheotherhand,iftheobjectiveistoseeifyoursoftwarecanhandlealargevolumeoftransactions,thedatautilityexpectationswillbeconsiderablyless.Therefore,understand-ingwhatdata,models,simulators,andknowledgeexistaswellastherequirementsfordatautilitywilldrivethespecificapproachtouseforgeneratingthesyntheticdata.

Table1-1

providesasummaryofthesyntheticdatatypes.

Table1-1.Typesofdatasynthesiswiththeirutilityandprivacyimplications

Typeofsyntheticdata

Utility

Generatedfromreal(nonpublic)datasetsGeneratedfromrealpublicdata

Canbequitehigh

Canbehigh,althoughlimitationsexistbecause

publicdatatendstobede-identifiedoraggregated

Generatedfromanexistingmodelofa

process,whichcanalsoberepresentedinasimulationengine

Basedonanalystknowledge

Willdependonthefidelityoftheexistinggeneratingmodel

Willdependonhowwelltheanalystknowsthedomainandthecomplexityofthephenomenon

Generatedfromgenericassumptionsnotspecifictothephenomenon

Willlikelybelow

TheBenefitsofSyntheticData|5

Nowthatyouhaveanunderstandingofthetypesofsyntheticdata,wewilllookatthebenefitsofdatasynthesisoverallandforsomeofthesedatatypesspecifically.

TheBenefitsofSyntheticData

Inthissection,wepresentseveralwaysthatdatasynthesiscansolvepracticalproblemswithAIMLprojects.Thebenefitsofsyntheticdatacanbedramatic.Itcanmakeimpossibleprojectsdoable,signif‐icantlyaccelerateAIMLinitiatives,orresultinmaterialimprove‐mentintheoutcomesofAIMLprojects.

ImprovingDataAccess

DataaccessiscriticaltoAIMLprojects.Thedataisneededtotrainandvalidatemodels.Morebroadly,dataisalsoneededforevaluat‐ingAIMLtechnologiesthathavebeendevelopedbyothers,aswellasfortestingAIMLsoftwareapplicationsorapplicationsthatincor‐porateAIMLmodels.

Typically,dataiscollectedforaparticularpurposewiththeconsentoftheindividual;forexample,forparticipatinginawebinarorforparticipatinginaclinicalresearchstudy.Ifyouwanttousethatsamedataforadifferentpurpose,suchasforbuildingamodeltopredictwhatkindofpersonislikelytosignupforawebinarorwhowouldparticipateinastudy,thenthatisconsideredasecondarypurpose.

Accesstodataforsecondaryanalysisisbecomingproblematic.TheUSGovernmentAccountabilityOffice

1

andtheMcKinseyGlobalInstitute

2

bothnotethataccessingdataforbuildingandtestingAIMLmodelsisachallengefortheiradoptionmorebroadly.ADeloitteanalysisconcludedthatdataaccessissuesarerankedinthetopthreechallengesfacedbycompanieswhenimplementingAI.

3

ArecentsurveyfromMITTechnologyReviewreportedthatalmost

1GovernmentAccountabilityOffice,“ArtificialIntelligence:EmergingOpportunities,Challenges,andImplications,”GAO-18-142SP(March2018).

https://oreil.ly/Cpyli

.

2McKinseyGlobalInstitute,“ArtificialIntelligence:TheNextDigitalFrontier?”(June2017).

https://oreil.ly/zJ8oZ

.

3DeloitteInsights,“StateofAIintheEnterprise,2ndEdition”(2018).

https://oreil.ly/

l07tJ

.

6|Chapter1:DefiningSyntheticData

halfoftherespondentsidentifieddataavailabilityasaconstrainttotheuseofAIwiththeircompany.

4

Atthesametime,thepublicisgettinguneasyabouthowtheirdataisusedandshared,andprivacylawsarebecomingmorestrict.ArecentsurveybyO’Reillyhighligh‐tedtheprivacyconcernsofcompaniesadoptingmachinelearningmodels,withmorethanhalfofcompaniesexperiencedwithAIMLcheckingforprivacyissues.

5

InthesameMITsurveymentionedpreviously,64%ofrespondentsnotethat“changesinregulationorgreaterregulatoryclarityondatasharing”isadevelopmentthatwouldbemostlikelytoleadtomoredatasharing.

Contemporaryprivacyregulations,suchastheUSHealthInsurancePortabilityandAccountabilityAct(HIPAA)andtheGeneralDataProtectionRegulation(GDPR)inEurope,imposeconstraintsorrequirementstousingpersonaldataforasecondarypurpose.Anexampleisarequirementtogetanadditionalconsentorauthoriza‐tionfromindividuals.Inmanycases,thisisnotpracticalandcanintroducebiasintothedatabecauseconsentersandnonconsentersdifferinimportantcharacteristics.

6

Datasynthesiscangivetheanalyst,ratherefficientlyandatscale,realisticdatatoworkwith.Giventhatsyntheticdatawouldnotbeconsideredidentifiablepersonaldata,privacyregulationswouldnotapply,andobligationsofadditionalconsenttousethedataforsec‐ondarypurposeswouldnotberequired.

7

ImprovingDataQuality

Giventhedifficultyingettingaccesstodata,manyanalyststrytojustuseopensourceorpublicdatasets.Thesecanbeagoodstartingpoint,buttheylackdiversityandareoftennotwellmatchedtotheproblemsthatthemodelsareintendedtosolve.Furthermore,open

4MITTechnologyReviewInsights,“TheGlobalAIAgenda:Promise,Reality,andaFutureofDataSharing”(March2020).

https://oreil.ly/FHg87

5BenLoricaandPacoNathan,TheStateofMachineLearningAdoptionintheEnterprise(O’Reilly).

6KhaledElEmam,etal.,“AReviewofEvidenceonConsentBiasinResearch,”AmericanJournalofBioethics13,no.4(2013):42–44.

https://oreil.ly/SiG2N.

7However,oneshouldfollowgoodpractices,suchasprovidingnoticetoindividualsabouthowthedataisusedanddisclosed,andhavingethicsoversightontheusesofdataandAIMLmodels.

TheBenefitsofSyntheticData|7

datamaylacksufficientheterogeneityforrobusttrainingofmodels.Forexample,theymaynotcapturerarecaseswellenough.

Sometimestherealdatathatexistsisnotlabeled.Labelingalargenumberofexamplesforsupervisedlearningtaskscanbetime-consuming,andmanuallabelingiserrorprone.Again,syntheticlabeleddatacanbegeneratedtoacceleratemodeldevelopment.Thesynthesisprocesscanensurehighaccuracyinthelabeling.

UsingSyntheticDataforExploratoryAnalysis

Analystscanusesyntheticdatamodelstovalidatetheirassumptionsanddemonstratethekindofresultsthatcanbeobtainedwiththeirmodels.Inthisway,thesyntheticdatacanbeusedinanexploratorymanner.Knowingthattheyhaveinterestingandusefulresults,theanalystscanthengothroughthemorecomplexprocessofgettingtherealdata(eitherraworde-identified)tobuildthefinalversionsoftheirmodels.

Forexample,ananalystwhoisaresearchercouldusetheirexplora-torymodelsonsyntheticdatatothenapplyforfundingtogetaccesstotherealdata,whichmayrequireafullprotocolandmultiplelev-elsofapprovals.Insuchaninstance,workwithsyntheticdatathatdoesnotproducegoodmodelsoractionableresultswouldstillbebeneficialbecauseanalystswouldhaveavoidedtheextraeffortrequiredtogetaccesstotherealdataforapotentiallyfutileanalysis.Anothervaluableuseofsyntheticdataisfortraininganinitialmodelbeforetherealdataisaccessible.Thenwhentheanalystgetstherealdata,theycanusethetrainedmodelasastartingpointfortrainingwiththerealdata.Thiscansignificantlyexpeditethecon-vergenceoftherealdatamodel(hencereducingcomputetime),andcanpotentiallyresultinamoreaccuratemodel.Thisisanexampleofusingsyntheticdatafortransferlearning.

UsingSyntheticDataforFullAnalysis

Avalidationservercanbedeployedtoruntheanalysiscodethatworkedonthesyntheticdataontherealdata.Ananalystwouldper-formalloftheiranalysisonthesyntheticdata,andthensubmitthecodethatworkedonthesyntheticdatatoasecurevalidationserverthathasaccesstotherealdata,asillustratedin

Figure1-1

.Becausethesyntheticdatawouldbestructuredinthesamewayastheorigi-naldata,thecodethatworkedonthesyntheticdatashouldwork

8|Chapter1:DefiningSyntheticData

directlyontherealdata.Theresultsarethensentbacktotheanalysttoconfirmtheirmodels.

Thisisnotintendedtobeaninteractivesystem.Theoutputfromthevalidationserverneedstobecheckedtoensurethatnorevealinginformationisbeingsentoutbythecodeoutput.Therefore,itisintendedtobeusedonceortwicebytheanalystattheveryendoftheiranalysis.Itdoesprovideawaytoprovideassurancetotheana-lyststhatthesynthesisresultsarereplicableontherealdata.

Figure1-1.Thesetupforavalidationserverusedtoexecutefinalcodethatproducedresultsonthesyntheticdata(adaptedfromReplica

AnalyticsLtd.,withpermission)

Whentheutilityofthesyntheticdataishighenough,theanalystscangetsimilarresultswiththesyntheticdataastheywouldhavewiththerealdata,andnovalidationserverisrequired.Insuchacase,thesyntheticdataplaystheroleofaproxyfortherealdata.Thisscenarioisplayingoutinmoreandmoreusecases:assynthesismethodsimproveovertime,thisproxyoutcomeisgoingtobecomemorecommon.

ReplacingRealDataThatDoesNotExist

Insomesituations,realdatamaynotexist.Theanalystmaybetry-ingtomodelsomethingcompletelynew,orthecreationorcollec-tionofarealdatasetfromscratchmaybecostprohibitiveorimpractical.Synthesizeddatacancoveredgeorrarecasesthataredifficult,impractical,orunethicaltocollectintherealworld.

Syntheticdatacanalsobeusedtoincreasetheheterogeneityofatrainingdataset,whichcanresultinamorerobustAIMLmodel.Forexample,unusualcasesinwhichdatadoesnotexistorisdifficulttocollectcanbesynthesizedandincludedinthetrainingdataset.In

LearningtoTrustSyntheticData|9

thatcase,theutilityofthesyntheticdataismeasuredintherobust‐nessincrementitgivestotheAIMLmodels.

Wehaveseenthatsyntheticdatacanplayakeyroleinsolvingaser‐iesofpracticalproblems.Onecriticalfactorfortheadoptionofdatasynthesis,however,istrustinthegenerateddata.Ithaslongbeenrecognizedthathighdatautilitywillbeneededforthebroadadop‐tionofdatasynthesismethods.

8

Thisisthetopicweturntonext.

LearningtoTrustSyntheticData

Initialinterestinsyntheticdatastartedintheearly’90swithpropos‐alstousemultipleimputationmethodstogeneratesyntheticdata.Imputationingeneralistheprocessofreplacingmissingdatavalueswithestimates.Missingdatacanoccur,forexample,inasurveyifsomerespondentsdonotcompleteaquestionnaire.

Accurateimputeddatarequirestheanalysttobuildamodelofthephenomenonofinterestbyusingtheavailabledataandthenusethatmodeltoestimatewhattheimputedvalueshouldbe.Tobuildavalidimputationmodel,theanalystneedstoknowhowthedatawillbeeventuallyused.Withmultipleimputation,youcreatemultipleimputedvaluestocapturetheuncertaintyintheseestimatedvalues.Thisprocesscanworkreasonablywellifyouknowhowthedatawillbeused.

Inthecontextofusingimputationfordatasynthesis,therealdataisaugmentedwithsyntheticdatabyusingthesametypeofimputationtechniques.Insuchacase,therealdataisusedtobuildanimputa‐tionmodelthatisthenusedtosynthesizenewdata.

Thechallengeisthatifyourimputationmodelsaredifferentfromtheeventualusesofthedata,theimputedvaluesmaynotbeveryreflectiveoftherealvalues,andthiswillintroduceerrorsinthedata.Thisriskofbuildingthewrongsynthesismodelhasledtohistoriccautionintheapplicationofsyntheticdata.

Morerecently,statisticalmachinelearningmodelshavebeenusedfordatasynthesis.Theadvantageofthesemodelsisthattheycancapturethedistributionsandcomplexrelationshipsamongthe

8JeromeP.Reiter,“NewApproachestoDataDissemination:AGlimpseintotheFuture(?),”CHANCE17,no.3(June2004):11–15.

https://oreil.ly/x89Vd

.

10|Chapter1:DefiningSyntheticData

variablesquitewell.Ineffect,theydiscovertheunderlyingmodelinthedataratherthanhavingthatmodelprespecifiedbytheanalyst.Andnowwithdeeplearningdatasynthesis,thesemodelscanbequiteaccurateinthattheycancapturemuchofthesignalinthedata—evensubtlesignals.

Therefore,wearegettingclosertothepointwherethegenerativemodelsavailabletodayareproducingdatasetsthatarebecomingquitegoodproxiesforrealdata.Therearealsowaystoassesstheutilityofsyntheticdatamoreobjectively.

Forexample,wecancomparetheanalysisresultsfromsyntheticdatawiththeanalysisresultsfromtherealdata.Ifwedonotknowwhatanalysiswillbeperformedonthesyntheticdata,arangeofpossibleanalysiscanbetriedbasedonknownexamplesofusesofthatdata.Oran“allmodels”evaluationcanbeperformedinwhichallpossiblemodelsarebuiltfromtherealandsyntheticdatasetsandcompared.

9

TheUSCensusBureauhas,atthetimeofwriting,decidedtolever‐agesyntheticdataforsomeofitsmostheavilyusedpublicdatasets,the2020decennialcensusdata.Foritstabulardatadisseminations,theagencywillcreateasyntheticdatasetfromthecollectedindividual-levelcensusdataandthenproducethepublictabulationsfromthatsyntheticdataset.Amixtureofformalandnonformalmethodswillbeusedinthesynthesisprocess.

10

Weprovideanover‐viewofthesynthesisprocessin

Chapter2

.This,arguably,demon‐stratesthelarge-scaleadoptionofdatasynthesisforoneofthemostcriticalandheavilyuseddatasetsavailabletoday.

Asorganizationsbuildtrustinsyntheticdata,theywillmovefromexploratoryanalysisusecases,totheuseofavalidationserver,andthentousingsyntheticdataasaproxyforrealdata.

Alegitimatequestioniswhataretheotherapproachesthatareavail‐abletodaytoaccessdataforAIMLpurposes,inadditiontodata

9AreviewofutilityassessmentapproachescanbefoundinKhaledElEmam,“Seven

WaystoEvaluat

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論