2025年河北省廊坊市高中聯合體高三下學期質量檢查(一)數學試題含解析_第1頁
2025年河北省廊坊市高中聯合體高三下學期質量檢查(一)數學試題含解析_第2頁
2025年河北省廊坊市高中聯合體高三下學期質量檢查(一)數學試題含解析_第3頁
2025年河北省廊坊市高中聯合體高三下學期質量檢查(一)數學試題含解析_第4頁
2025年河北省廊坊市高中聯合體高三下學期質量檢查(一)數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025年河北省廊坊市高中聯合體高三下學期質量檢查(一)數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,內角A,B,C所對的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.162.已知函數,則函數的圖象大致為()A. B.C. D.3.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點F的坐標為(c,0),點A是第一象限內雙曲線漸近線上的一點,O為坐標原點,滿足|OA|=A.2 B.2 C.2334.已知函數(,是常數,其中且)的大致圖象如圖所示,下列關于,的表述正確的是()A., B.,C., D.,5.函數f(x)=2x-3A.[32C.[326.將函數的圖像向左平移個單位得到函數的圖像,則的最小值為()A. B. C. D.7.設函數,則使得成立的的取值范圍是().A. B.C. D.8.三棱錐的各個頂點都在求的表面上,且是等邊三角形,底面,,,若點在線段上,且,則過點的平面截球所得截面的最小面積為()A. B. C. D.9.已知復數滿足,則=()A. B.C. D.10.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B.C. D.11.設函數,當時,,則()A. B. C.1 D.12.已知f(x),g(x)都是偶函數,且在[0,+∞)上單調遞增,設函數F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的常數項為______.14.已知數列為等比數列,,則_____.15.的展開式中所有項的系數和為______,常數項為______.16.已知復數(為虛數單位),則的模為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在綜合素質評價的某個維度的測評中,依據評分細則,學生之間相互打分,最終將所有的數據合成一個分數,滿分100分,按照大于或等于80分的為優秀,小于80分的為合格,為了解學生的在該維度的測評結果,在畢業班中隨機抽出一個班的數據.該班共有60名學生,得到如下的列聯表:優秀合格總計男生6女生18合計60已知在該班隨機抽取1人測評結果為優秀的概率為.(1)完成上面的列聯表;(2)能否在犯錯誤的概率不超過0.10的前提下認為性別與測評結果有關系?(3)現在如果想了解全校學生在該維度的表現情況,采取簡單隨機抽樣方式在全校學生中抽取少數一部分來分析,請你選擇一個合適的抽樣方法,并解釋理由.附:0.250.100.0251.3232.7065.02418.(12分)設,,,.(1)若的最小值為4,求的值;(2)若,證明:或.19.(12分)已知傾斜角為的直線經過拋物線的焦點,與拋物線相交于、兩點,且.(1)求拋物線的方程;(2)設為拋物線上任意一點(異于頂點),過做傾斜角互補的兩條直線、,交拋物線于另兩點、,記拋物線在點的切線的傾斜角為,直線的傾斜角為,求證:與互補.20.(12分)已知拋物線:()的焦點到點的距離為.(1)求拋物線的方程;(2)過點作拋物線的兩條切線,切點分別為,,點、分別在第一和第二象限內,求的面積.21.(12分)在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.(1)求的直角坐標方程與點的直角坐標;(2)求證:.22.(10分)已知.(1)若是上的增函數,求的取值范圍;(2)若函數有兩個極值點,判斷函數零點的個數.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據正弦定理邊化角以及三角函數公式可得,再根據面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C本題主要考查了解三角形中正余弦定理與面積公式的運用,屬于中檔題.2.A【解析】

用排除法,通過函數圖像的性質逐個選項進行判斷,找出不符合函數解析式的圖像,最后剩下即為此函數的圖像.【詳解】設,由于,排除B選項;由于,所以,排除C選項;由于當時,,排除D選項.故A選項正確.故選:A本題考查了函數圖像的性質,屬于中檔題.3.C【解析】

計算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,Fc,0,故Mc,故選:C.本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.4.D【解析】

根據指數函數的圖象和特征以及圖象的平移可得正確的選項.【詳解】從題設中提供的圖像可以看出,故得,故選:D.本題考查圖象的平移以及指數函數的圖象和特征,本題屬于基礎題.5.A【解析】

根據冪函數的定義域與分母不為零列不等式組求解即可.【詳解】因為函數y=2x-3解得x≥32且∴函數f(x)=2x-3+1定義域的三種類型及求法:(1)已知函數的解析式,則構造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構成的不等式(組)求解;(3)若已知函數fx的定義域為a,b,則函數fgx6.B【解析】

根據三角函數的平移求出函數的解析式,結合三角函數的性質進行求解即可.【詳解】將函數的圖象向左平移個單位,得到,此時與函數的圖象重合,則,即,,當時,取得最小值為,故選:.本題主要考查三角函數的圖象和性質,利用三角函數的平移關系求出解析式是解決本題的關鍵.7.B【解析】

由奇偶性定義可判斷出為偶函數,由單調性的性質可知在上單調遞增,由此知在上單調遞減,從而將所求不等式化為,解絕對值不等式求得結果.【詳解】由題意知:定義域為,,為偶函數,當時,,在上單調遞增,在上單調遞減,在上單調遞增,則在上單調遞減,由得:,解得:或,的取值范圍為.故選:.本題考查利用函數的單調性和奇偶性求解函數不等式的問題;奇偶性的作用是能夠確定對稱區間的單調性,單調性的作用是能夠將函數值的大小關系轉化為自變量的大小關系,進而化簡不等式.8.A【解析】

由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點E,由SA=4,AD=3SD,得DE=1,所以OD=.則過點D的平面截球O所得截面圓的最小半徑為所以過點D的平面截球O所得截面的最小面積為故選:A本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.9.B【解析】

利用復數的代數運算法則化簡即可得到結論.【詳解】由,得,所以,.故選:B.本題考查復數代數形式的乘除運算,考查復數的基本概念,屬于基礎題.10.B【解析】

由題意首先確定幾何體的空間結構特征,然后結合空間結構特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長為正方體挖去一個以為球心以為半徑球體的,如圖,故其表面積為,故選:B.(1)以三視圖為載體考查幾何體的表面積,關鍵是能夠對給出的三視圖進行恰當的分析,從三視圖中發現幾何體中各元素間的位置關系及數量關系.(2)多面體的表面積是各個面的面積之和;組合體的表面積應注意重合部分的處理.(3)圓柱、圓錐、圓臺的側面是曲面,計算側面積時需要將這個曲面展為平面圖形計算,而表面積是側面積與底面圓的面積之和.11.A【解析】

由降冪公式,兩角和的正弦公式化函數為一個角的一個三角函數形式,然后由正弦函數性質求得參數值.【詳解】,時,,,∴,由題意,∴.故選:A.本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數性質,掌握正弦函數性質是解題關鍵.12.A【解析】試題分析:由題意得,F(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點:1.函數的性質;2.分類討論的數學思想.【思路點睛】本題在在解題過程中抓住偶函數的性質,避免了由于單調性不同導致1-a與1+a大小不明確的討論,從而使解題過程得以優化,另外,不要忘記定義域,如果要研究奇函數或者偶函數的值域、最值、單調性等問題,通常先在原點一側的區間(對奇(偶)函數而言)或某一周期內(對周期函數而言)考慮,然后推廣到整個定義域上.二、填空題:本題共4小題,每小題5分,共20分。13.160【解析】

先求的展開式中通項,令的指數為3即可求解結論.【詳解】解:因為的展開式的通項公式為:;令,可得;的展開式中的常數項為:.故答案為:160.本題考查二項式系數的性質,關鍵是熟記二項展開式的通項,屬于基礎題.14.81【解析】

設數列的公比為,利用等比數列通項公式求出,代入等比數列通項公式即可求解.【詳解】設數列的公比為,由題意知,因為,由等比數列通項公式可得,,解得,由等比數列通項公式可得,.故答案為:本題考查等比數列通項公式;考查運算求解能力;屬于基礎題.15.3-260【解析】

(1)令求得所有項的系數和;(2)先求出展開式中的常數項與含的系數,再求展開式中的常數項.【詳解】將代入,得所有項的系數和為3.因為的展開式中含的項為,的展開式中含常數項,所以的展開式中的常數項為.故答案為:3;-260本題考查利用二項展開式的通項公式解決二項展開式的特殊項問題,屬于基礎題.16.【解析】,所以.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)在犯錯誤的概率不超過0.10的前提下認為“性別與測評結果有關系”(3)見解析.【解析】

(1)由已知抽取的人中優秀人數為20,這樣結合已知可得列聯表;(2)根據列聯表計算,比較后可得;(3)由于性別對結果有影響,因此用分層抽樣法.【詳解】解:(1)優秀合格總計男生62228女生141832合計204060(2)由于,因此在犯錯誤的概率不超過0.10的前提下認為“性別與測評結果有關系”.(3)由(2)可知性別有可能對是否優秀有影響,所以采用分層抽樣按男女生比例抽取一定的學生,這樣得到的結果對學生在該維度的總體表現情況會比較符合實際情況.本題考查獨立性檢驗,考查分層抽樣的性質.考查學生的數據處理能力.屬于中檔題.18.(1)2;(2)見解析【解析】

(1)將化簡為,再利用基本不等式即可求出最小值為4,便可得出的值;(2)根據,即,得出,利用基本不等式求出最值,便可得出的取值范圍.【詳解】解:(1)由題可知,,,,,∴.(2)∵,∴,∴,∴,即:或.本題考查基本不等式的應用,利用基本不等式和放縮法求最值,考查化簡計算能力.19.(1)(2)證明見解析【解析】

(1)根據題意,設直線方程為,聯立方程,根據拋物線的定義即可得到結論;(2)根據題意,設的方程為,聯立方程得,同理可得,進而得到,再利用點差法得直線的斜率,利用切線與導數的關系得直線的斜率,進而可得與互補.【詳解】(1)由題意設直線的方程為,令、,聯立,得,根據拋物線的定義得,又,故所求拋物線方程為.(2)依題意,設,,設的方程為,與聯立消去得,,同理,直線的斜率=切線的斜率,由,即與互補.本題考查直線與拋物線的位置關系的綜合應用,直線斜率的應用,考查分析問題解決問題的能力,屬于中檔題.20.(1)(2)【解析】

(1)因為,可得,即可求得答案;(2)分別設、的斜率為和,切點,,可得過點的拋物線的切線方程為:,聯立直線方程和拋物線方程,得到關于一元二次方程,根據,求得,,進而求得切點,坐標,根據兩點間距離公式求得,根據點到直線距離公式求得點到切線的距離,進而求得的面積.【詳解】(1),,解得,拋物線的方程為.(2)由題意可知,、的斜率都存在,分別設為和,切點,,過點的拋物線的切線:,由,消掉,可得,,即,解得,,又由,得,,,同理可得,,,,,切線的方程為,點到切線的距離為,,即的面積為.本題主要考查了求拋物線方程和拋物線中三角形面積問題,解題關鍵是掌握拋物線定義和圓錐曲線與直線交點問題時,通常用直線和圓錐曲線聯立方程組,通過韋達定理建立起目標的關系式21.(1),;(2)見解析.【解析】

(1)將曲線的極坐標方程變形為,再由可將曲線的極坐標方程化為直角坐標方程,將直線的方程與曲線的方程聯立,求出點、的坐標,即可得出線段的中點的坐標;(2)求得,寫出直線的參數方程,將直線的參數方程與曲線的普通方程聯立,利用韋達定理求得的值,進而可得出結論.【詳解】(1)曲線的極坐標方程可化為,即,將代入曲線的方程得,所以,曲線的直角坐標方程為.將直線的極坐標方程化為普通方程得,聯立,得或,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論