青島科技大學《商業美術插圖》2023-2024學年第二學期期末試卷_第1頁
青島科技大學《商業美術插圖》2023-2024學年第二學期期末試卷_第2頁
青島科技大學《商業美術插圖》2023-2024學年第二學期期末試卷_第3頁
青島科技大學《商業美術插圖》2023-2024學年第二學期期末試卷_第4頁
青島科技大學《商業美術插圖》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁青島科技大學

《商業美術插圖》2023-2024學年第二學期期末試卷題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的目標跟蹤任務中,目標可能會被遮擋、變形或快速移動。假設要跟蹤一個在人群中快速移動的人物,以下哪種跟蹤算法可能更適合應對這種復雜情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于均值漂移的跟蹤算法D.基于模板匹配的跟蹤算法2、計算機視覺中的表情識別旨在識別圖像或視頻中人物的表情。假設要在一個情感分析系統中準確識別表情,以下關于表情識別方法的描述,正確的是:()A.基于幾何特征的表情識別方法對表情的細微變化不敏感,識別準確率低B.基于紋理特征的表情識別方法能夠很好地捕捉表情的局部特征,但容易受到光照影響C.深度學習中的卷積神經網絡在表情識別中能夠學習到全局和局部的特征,但對大規模數據集依賴嚴重D.表情識別系統只適用于正面清晰的人臉表情,對于側臉和遮擋的表情無法識別3、在計算機視覺的姿態估計任務中,需要確定物體在三維空間中的方向和位置。假設要估計一個機器人手臂的姿態,以實現精確的控制和操作。以下哪種姿態估計方法在處理這種機械結構時準確性更高?()A.基于模型的姿態估計B.基于深度學習的姿態估計C.基于視覺慣性里程計的姿態估計D.基于幾何約束的姿態估計4、在計算機視覺的圖像去噪任務中,假設要去除一張受到嚴重噪聲污染的圖像中的噪聲,同時盡可能保留圖像的細節和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學習的圖像去噪模型,如DnCNND.不進行任何去噪處理,保留原始噪聲圖像5、當利用計算機視覺進行視頻監控中的異常行為檢測,例如打架、盜竊等,以下哪種方法可能有助于準確識別異常行為?()A.建立正常行為模型B.運動軌跡分析C.人群密度估計D.以上都是6、在計算機視覺的圖像修復任務中,假設要修復一張有部分缺失的圖像。以下關于圖像修復方法的描述,正確的是:()A.基于擴散的圖像修復方法能夠自然地填充缺失區域,但修復速度慢B.基于樣本的圖像修復方法可以快速生成修復結果,但容易出現重復紋理C.深度學習中的生成對抗網絡(GAN)在圖像修復中無法保證修復內容與周圍區域的一致性D.所有的圖像修復方法都能夠完美地恢復出圖像缺失部分的真實內容7、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設要估計一段視頻中物體的運動速度和方向,以下關于光流估計方法的描述,正確的是:()A.傳統的基于梯度的光流估計方法在復雜場景中能夠準確計算光流B.深度學習中的光流估計網絡不需要大量的標注數據進行訓練C.光流估計的結果不受圖像噪聲和模糊的影響D.結合時空信息的深度學習光流估計方法能夠提高估計的準確性和魯棒性8、目標檢測是計算機視覺中的重要任務之一。假設要在一張城市街道的圖像中檢測出所有的行人和車輛,以下關于目標檢測算法的描述,正確的是:()A.基于傳統的圖像處理方法的目標檢測算法在復雜場景中表現優于深度學習算法B.深度學習中的單階段目標檢測算法比兩階段算法速度快,但精度較低C.目標檢測算法只需要關注目標的位置,不需要考慮目標的類別D.目標檢測的準確率不受圖像質量、光照條件和目標大小變化的影響9、在計算機視覺的文本檢測和識別任務中,假設要從一張圖片中提取并識別其中的文字信息。以下關于文本檢測和識別的描述,哪一項是不正確的?()A.可以先通過文本檢測算法定位圖片中的文本區域,然后進行識別B.深度學習中的卷積神經網絡在文本識別中表現出色,能夠準確識別各種字體和風格的文字C.文本檢測和識別對于彎曲、傾斜和模糊的文字能夠輕松應對,沒有任何困難D.可以結合光學字符識別(OCR)技術,將圖片中的文字轉換為可編輯的文本10、在計算機視覺的圖像檢索任務中,根據用戶提供的圖像或特征在數據庫中查找相似的圖像。假設要從一個大型圖像庫中找到與給定圖像相似的圖片,以下關于圖像檢索方法的描述,正確的是:()A.基于圖像的顏色和紋理特征進行檢索能夠滿足所有的檢索需求B.深度學習中的卷積神經網絡提取的特征在圖像檢索中不如手工設計的特征有效C.考慮圖像的語義信息和高層特征可以提高圖像檢索的準確性和相關性D.圖像檢索的速度和效率不受數據庫大小和特征維度的影響11、在圖像去噪中,BM3D(Block-Matchingand3DFiltering)算法的優勢在于()A.去噪效果好B.保持圖像細節C.計算效率高D.以上都是12、在計算機視覺中,人臉檢測和識別是重要的應用方向。以下關于人臉檢測和識別的說法,不正確的是()A.人臉檢測旨在確定圖像或視頻中是否存在人臉,并定位人臉的位置B.人臉識別是在檢測到人臉的基礎上,對人臉的身份進行識別和驗證C.深度學習方法在人臉檢測和識別中取得了巨大的成功,但仍然存在一些挑戰,如光照變化和姿態變化D.人臉檢測和識別技術已經非常成熟,不存在任何錯誤率和安全隱患13、在計算機視覺的圖像檢索任務中,假設要從一個大型圖像數據庫中快速找到與給定圖像相似的圖像。以下關于圖像檢索方法的描述,正確的是:()A.基于文本標注的圖像檢索方法依賴于人工標注的準確性和完整性,檢索效果不穩定B.基于內容的圖像檢索通過提取圖像的特征進行相似性比較,但特征的選擇對檢索結果影響不大C.哈希方法能夠將高維的圖像特征映射為低維的哈希碼,大大提高檢索效率,但會損失一定的準確性D.所有的圖像檢索方法都能夠在大規模數據庫中實現實時、準確的檢索14、計算機視覺中的行人重識別是指在不同攝像頭拍攝的圖像中識別出同一個行人。假設要在一個大型商場的監控系統中實現行人重識別,以下關于行人重識別方法的描述,正確的是:()A.基于顏色和紋理特征的方法對行人的姿態和光照變化不敏感,識別準確率高B.深度學習中的度量學習方法能夠學習到行人的判別性特征,但容易受到背景干擾C.行人重識別系統只需要關注行人的外觀特征,不需要考慮行人的行為特征D.行人重識別在不同場景和攝像頭視角下的性能始終保持穩定,不受影響15、在計算機視覺的圖像檢索任務中,需要根據用戶提供的示例圖像從大規模圖像數據庫中找到相似的圖像。假設要構建一個高效的圖像搜索引擎,能夠快速準確地返回相關圖像。以下哪種圖像檢索方法在處理大規模數據時性能更優?()A.基于內容的圖像檢索B.基于文本標注的圖像檢索C.基于哈希編碼的圖像檢索D.基于深度學習特征的圖像檢索16、計算機視覺中的動作識別是對視頻中的人體動作進行分類和理解。假設我們要分析一段體育比賽的視頻,識別其中運動員的各種動作,以下哪種方法能夠有效地捕捉動作的時空特征?()A.基于手工特征和分類器的方法B.基于深度學習的時空卷積網絡C.基于光流和軌跡的方法D.基于隱馬爾可夫模型的方法17、在計算機視覺的圖像檢索任務中,假設要從海量的圖像庫中快速找到與給定圖像相似的圖像。以下關于圖像特征表示的選擇,哪一項是需要重點考慮的?()A.選擇具有高維度的特征向量,包含豐富的圖像信息B.采用低維度但具有區分性的特征表示,提高檢索效率C.忽略特征的維度和區分性,隨機選擇一種特征表示D.只使用圖像的顏色特征,忽略形狀和紋理等特征18、在計算機視覺的三維重建任務中,假設要從一組不同角度拍攝的二維圖像中重建出物體的三維模型。這些圖像可能存在噪聲和拍攝誤差。為了獲得準確的三維重建結果,以下哪種技術是重要的?()A.基于立體視覺的方法,通過匹配不同圖像中的對應點B.直接使用二維圖像的平均信息來估計三維形狀C.忽略圖像中的噪聲和誤差,進行簡單的重建D.隨機生成三維模型,然后與二維圖像進行匹配19、在計算機視覺的圖像分割任務中,需要將圖像中的不同物體或區域準確地劃分出來。假設要對一張包含多個水果的圖像進行精確分割,每個水果的邊界可能不清晰,且存在部分重疊和陰影。以下哪種圖像分割算法在處理這種具有挑戰性的情況時表現更為出色?()A.基于閾值的分割B.基于區域的分割C.基于邊緣檢測的分割D.基于深度學習的語義分割20、視頻分析是計算機視覺的一個重要領域。假設我們要分析一段監控視頻,以檢測異常行為,如打架、盜竊等。對于這種實時性要求較高的視頻分析任務,以下哪種方法更適合用于快速處理和檢測?()A.對每一幀圖像單獨進行分析B.基于光流的方法跟蹤對象運動C.利用深度學習模型直接對視頻進行分析D.采用傳統的圖像處理方法,如背景減除21、在計算機視覺的三維重建任務中,假設要從一組二維圖像恢復出物體的三維結構。以下關于三維重建方法的描述,正確的是:()A.基于立體視覺的方法需要多視角的圖像,并且對相機的標定精度要求不高B.結構光方法能夠快速準確地獲取物體表面的三維信息,但對環境光敏感C.從運動中恢復結構(SfM)方法只適用于靜態場景,無法處理動態物體D.所有的三維重建方法都能夠生成高精度的、完整的物體三維模型22、在計算機視覺的三維重建任務中,我們需要從多幅二維圖像中恢復物體的三維結構。假設我們只有少量的、視角有限的圖像,以下哪種重建方法可能面臨較大挑戰?()A.基于立體視覺的重建方法B.基于運動恢復結構(StructurefromMotion)的方法C.利用激光掃描數據進行重建D.基于模型擬合的重建方法23、在計算機視覺的視頻監控系統中,異常事件檢測是重要功能之一。假設要在一個倉庫的監控視頻中檢測出異常的人員活動或物品移動。以下哪種異常事件檢測方法在處理這種大規模視頻數據時能夠更有效地發現異常?()A.基于規則的檢測B.基于統計模型的檢測C.基于深度學習的檢測D.基于人工觀察的檢測24、計算機視覺中的圖像超分辨率重建旨在提高圖像的分辨率。假設要將一張低分辨率的衛星圖像重建為高分辨率圖像,以下關于模型訓練的挑戰,哪一項是最為突出的?()A.缺乏足夠的高分辨率衛星圖像數據用于訓練B.模型的訓練時間過長,難以在短時間內得到結果C.難以評估重建后的圖像質量,沒有明確的標準D.計算資源需求過大,普通計算機難以承受25、在計算機視覺的圖像風格遷移任務中,將一張圖像的風格應用到另一張圖像上。假設要將一幅油畫的風格遷移到一張照片上,以下關于圖像風格遷移方法的描述,正確的是:()A.基于手工特征提取和風格轉換的方法能夠實現自然逼真的風格遷移B.深度學習中的生成對抗網絡(GAN)在風格遷移中無法生成多樣化的風格效果C.圖像的內容和風格可以完全獨立地進行處理,互不影響D.考慮圖像的局部和全局特征以及語義信息能夠提升風格遷移的質量26、在計算機視覺的目標識別任務中,除了識別目標的類別,還需要確定目標的位置和大小。假設我們要在一幅復雜的圖像中識別多個不同大小的物體,以下哪種目標識別算法能夠適應不同尺度的目標?()A.基于滑動窗口的目標識別算法B.基于特征金字塔的目標識別算法C.基于注意力機制的目標識別算法D.基于模板匹配的目標識別算法27、在計算機視覺中,三維重建是從二維圖像恢復物體的三維結構。以下關于三維重建的敘述,不正確的是()A.可以通過多視圖幾何、結構光或深度學習方法進行三維重建B.三維重建在虛擬現實、文物保護和工業設計等領域有著廣泛的應用C.三維重建的結果總是精確無誤的,能夠完全還原物體的真實三維結構D.噪聲、遮擋和圖像質量等因素會對三維重建的結果產生影響28、計算機視覺在工業檢測中的應用越來越廣泛。假設要檢測電子電路板上的微小缺陷,以下哪種圖像采集設備可能提供更高的分辨率和精度?()A.普通數碼相機B.工業線陣相機C.手機攝像頭D.監控攝像頭29、假設要構建一個能夠識別人臉表情的計算機視覺系統,用于情感分析和人機交互。考慮到表情的細微變化和個體差異,以下哪種模型架構可能更適合處理這種復雜的任務?()A.多層感知機B.卷積神經網絡C.循環神經網絡D.生成對抗網絡30、計算機視覺中的醫學圖像分析對于疾病的診斷和治療具有重要意義。以下關于醫學圖像分析的描述,不準確的是()A.可以對X光、CT、MRI等醫學圖像進行病灶檢測、器官分割和疾病分類B.深度學習技術在醫學圖像分析中取得了顯著的成果,但也面臨數據標注困難和模型泛化能力不足的問題C.醫學圖像分析需要遵循嚴格的醫學標準和倫理規范,確保結果的準確性和可靠性D.醫學圖像分析完全依賴于計算機視覺技術,醫生的經驗和專業知識不再重要二、應用題(本大題共5個小題,共25分)1、(本題5分)利用圖像分割算法,將衛星圖像中的農田和城市區域進行劃分。2、(本題5分)基于深度學習,實現對舉重比賽中運動員動作的標準性檢測。3、(本題5分)運用圖像分類技術,對不同種類的牙雕進行分類。4、(本題5分)運用深度學習模型,對古代建筑的風格和年代進行鑒定。5、(本題5分)基于深度學習的圖像生成對抗網絡(GAN),生成逼真的人物肖像。三、簡答題(本大題共5個小題,共25

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論