




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第19章對流流動傳質19.1對流傳質基本概念19.2對流傳質中的重要參數19.3層流濃度邊界層的精確解19.4濃度邊界層的近似解19.5小結19.1對流傳質基本概念在實際生產過程中,流體多處于運動狀態,當運動著的流體與壁面之間或兩個有限互溶的運動流體之間發生傳質時,習慣統稱為對流傳質。溶于流動液體的溶質中發生質量傳遞時,對流傳質方程為:式中,NA為溶質在單位時間內離開單位界面的物質的量;cAs為溶質在界面流體中的濃度,它可認為是流體與固體處于平衡態時的濃度;cA為流場中某一點的濃度。[例題19-1]空氣流從固體CO2(干冰)平板表面流過,平板表面積為1×10-3m2,空氣流速為2m/s,溫度為293K,壓力為1.013×105Pa,CO2的升華速率為2.29×10-4mol/s。在該溫度下,CO2向空氣的擴散速率為1.5×10-5m2/s,空氣的運動黏度為1.55×10-5m2/s。計算在上述條件下CO2升華進入空氣的傳質系數。解:題中給出的是摩爾濃度,書中式(19-2)可以寫成:19.1對流傳質基本概念因此在293K、1.013×105Pa時假定cA∞=019.2對流傳質中的重要參數
對于三種傳輸現象,分子擴散率的定義分別為:動量擴散率:;熱擴散率:;質量擴散率:DAB。三種擴散率的量綱均為L2/t。因此,上述三個參數中任意兩個的比值也一定是無量綱的。分子動量擴散率和分子質量擴散率的比值稱作施密特(Schmidt)數。Sc在對流傳質中所起的作用,與Pr在對流傳熱中類似。另外,將分子熱擴散率和分子質量擴散率的比值稱作路易斯(Lewis)數,即Le用于既有對流傳質又有對流換熱的過程。由于Sc和Le都是流體物性參數的組合,所以可以把它們視為擴散體系的特性。分析溶質A從固體向流過固體表面的流體的傳質過程其濃度分布如下圖所示。
19.2對流傳質中的重要參數19.2對流傳質中的重要參數由于在表面上的物質是以分子擴散的方式進行的,因此在圖中的傳質還可以表達為:因為上面兩式所確定的是離開表面(進入流體)的溶質A的質量流密度,所以這兩個方程是相等的。于是可得
當邊界上的濃度CAs等于常數時,上式可以簡化為
該表面與流體間的質量(摩爾濃度)傳遞可以寫為19.2對流傳質中的重要參數上式的右側是表面濃度梯度與總濃度或參考濃度梯度的比值。因此,可把它看作是分子傳質動力與流體對流傳質動力的比值。該比值定義為舍伍德(Sherwood)數Sh。由于該式的推導與對流傳熱中的類似,所以也常把kcL/DAB看作傳質的努塞爾數NuAB。上式兩邊各乘以有效長度L,可以得到下述無量綱表達式:移項簡化后,可將上式寫為:[例題19-2]分別計算甲醇在298K、1.013×105Pa的空氣中和在298K的水中的Sc。19.2對流傳質中的重要參數
由附錄可查,空氣的運動黏度為,ν=1.553×10-5m2/s
因此,甲醇在空氣中的Sc為:解:298K時,甲醇在空氣中的擴散速率可由附錄中得到由附錄可查,288K時甲醇在液態水中的擴散速率1.28×10-9m2/s,由此可算出
298K時的數值,水在298K時的運動黏度也可從附錄中查出,為0.805×10-6m2/s。因此,甲醇在水中的Sc為19.3層流濃度邊界層的精確解在穩態動量傳遞中,介紹過的邊界層方程包括二維不可壓縮連續方程當ν和P為常數時,x方向上的運動方程為:對于熱邊界層,在穩態、不可壓縮、二維和熱擴散率為常數的絕熱流動中,能量方程式為:對于穩態、不可壓縮、無化學反應,質量擴散率為常數的二維流動,濃度邊界層內的傳質方程式為:19.3層流濃度邊界層的精確解
速度邊界層
溫度邊界層
濃度邊界層可以寫為下述關于速度、溫度和濃度比的關系式
19.3
層流濃度邊界層的精確解
其中邊界條件為:y=0時,;y=∞時,。
經過變量替換后,得到三個相似的公式,且其邊界條件相似。三種傳輸現象所得到的解,也應該相似的。當動量擴散率與熱擴散率的比值ν/α=Pr=1時,可解決對流換熱問題。當動量擴散率與熱擴散率的比值ν/DAB=Sc=1時,也有同樣解來描述對流傳質問題。
令:可以得到:
令:
可以得到:
其中邊界條件為:y=0時,θ=0;y=∞時,θ=1。
令:
可以得到:
其中邊界條件為:y=0時,;y=∞時,。19.3層流濃度邊界層的精確解
應用布拉修斯求解方程的思路和方法,對速度邊界層
對速度邊界層對濃度邊界層整理后:沿流動方向距平板前沿為x處的局部的Shx,與平均ShL之間的關系為:19.3
層流濃度邊界層的精確解對于平板層流邊界層中的傳質有:或寫成下面的形式應用積分方法,可以求得作用在一塊長為L、寬為W(面積為S)平板上的平均傳質系數kCm[例題19-3]平板湍流邊界層的傳質系數,可用局部Shx表示為:為:,其中,x為沿流動方向距平板前緣的距離。由層流向湍流的轉換發生在19.3層流濃度邊界層的精確解Rex=2×105處。試對于長度為L的平板,導出其平均傳質系數kCm的表達式。
解:根據定義,式中:
將上述兩個式子代入平均傳質系數方程后,可得
式中,Lt是從平板前沿到Rex=2×105處的過渡點的距離如圖所示,分析一個位于濃度邊界層內的控制體。19.4濃度邊界層的近似解
圖中以虛線標出的控制體的寬度為Δx,高度等于濃度邊界層的厚度δc,深度為單位長度。由于過程是穩態的,所以在整GA1+GA3+GA4=GA2
個控制體內,摩爾質量流率平衡式為式中,GA為組分A傳質的摩爾質量流率。在每個表面上,其摩爾質量流率的表達式分別為:代入積分可得:19.4濃度邊界層的近似解濃度分布要滿足相應的濃度邊界條件,即y=0處,;y=δC處,y=δc處,;y=0處,
如果重新分析平行于一平板的層流流動,那么可應用馮·卡門積分式來求出它的近似解。作為一級近似,濃度隨y的變化假設為下述冪級數:
同理也可以求解平板湍流邊界層的近似解。若假設其速度分布為:
應用邊界條件后,即可得出下述表達式19.4濃度邊界層的近似解
求解,即可得到:它與的準確解極為相近。雖然這個結果不是準確解,但是它具有足夠高的精度。這表明,該積分方法全可以用于某些準確解未知的情況,其精度是令人滿意的
濃度分布為:
那么,湍流邊界層的局部舍伍德數為:19.5小結對流傳質是流體流動條件下物質傳遞過程。掌握濃度邊界層及有效濃度邊界層的概念,明確對流傳質系數的單位、物理意義、影響因素及對流傳質系數模型理論。當流體流過表面并與之發生對流傳質時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 日常行為規范指南
- 2024-2025學年統編版語文七年級下冊期末綜合素質評價(含答案)
- 2024-2025學年七年級上學期期末歷史復習《選擇題》含答案解析
- 2024-2025學年河北省邢臺市威縣固獻學區統編版一年級上冊期末考試語文試卷(含答案解析)
- 新生兒紅細胞增多癥-高黏滯度綜合征的健康宣教
- 半小時學審計培訓
- 珠寶營業員培訓
- 客戶信用風險定期評估預警管理制度
- 廣西壯族自治區河池市東蘭縣2024年中考數學模擬試卷含解析
- AFC高級工練習試題
- 柯坦鎮中心小學開展研學旅行活動實施方案
- 二年級下冊語文-第五單元單元解讀-人教版
- 2024-2025學年華東師大版數學七年級上冊計算題專項訓練
- 服務類驗收單
- 2022-2023學年陜西省寶雞市渭濱區八年級(下)期中數學試卷(含解析)
- 2023-2024學年海南省天一大聯考高三下學期第六次檢測數學試卷含解析
- 危重患者識別和處理-課件
- 議小型水庫的病害及防患措施
- 預防交叉感染課件
- 上下班交通安全培訓課件
- 企業家精神的性別差異基于創業動機視角的研究
評論
0/150
提交評論