




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省南京市棲霞區、雨花區、江寧區重點中學中考五模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,點P是∠AOB內任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數是().A. B. C. D.2.如圖,點D在△ABC邊延長線上,點O是邊AC上一個動點,過O作直線EF∥BC,交∠BCA的平分線于點F,交∠BCA的外角平分線于E,當點O在線段AC上移動(不與點A,C重合)時,下列結論不一定成立的是()A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四邊形AFCE是矩形3.某品牌的飲水機接通電源就進入自動程序:開機加熱到水溫100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機后用時(min)成反比例關系,直至水溫降至30℃,飲水機關機.飲水機關機后即刻自動開機,重復上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間x(min)的關系如圖所示,水溫從100℃降到35℃所用的時間是()A.27分鐘 B.20分鐘 C.13分鐘 D.7分鐘4.一次函數y=kx+k(k≠0)和反比例函數在同一直角坐標系中的圖象大致是()A. B. C. D.5.如圖,A,B是半徑為1的⊙O上兩點,且OA⊥OB.點P從A出發,在⊙O上以每秒一個單位長度的速度勻速運動,回到點A運動結束.設運動時間為x,弦BP的長度為y,那么下面圖象中可能表示y與x的函數關系的是A.① B.④ C.②或④ D.①或③6.如圖,將△ABC繞點C旋轉60°得到△A′B′C′,已知AC=6,BC=4,則線段AB掃過的圖形面積為()A. B. C.6π D.以上答案都不對7.如圖,已知AB是⊙O的直徑,弦CD⊥AB于E,連接BC、BD、AC,下列結論中不一定正確的是()A.∠ACB=90° B.OE=BE C.BD=BC D.8.甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地(轎車的平均速度大于貨車的平均速度),如圖線段OA和折線BCD分別表示兩車離甲地的距離y(單位:千米)與時間x(單位:小時)之間的函數關系.則下列說法正確的是()A.兩車同時到達乙地B.轎車在行駛過程中進行了提速C.貨車出發3小時后,轎車追上貨車D.兩車在前80千米的速度相等9.在△ABC中,∠C=90°,tanA=125,△ABC的周長為60,那么△ABCA.60 B.30 C.240 D.12010.某市2010年元旦這天的最高氣溫是8℃,最低氣溫是﹣2℃,則這天的最高氣溫比最低氣溫高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃二、填空題(共7小題,每小題3分,滿分21分)11.2011年,我國汽車銷量超過了18500000輛,這個數據用科學記數法表示為▲輛.12.在數軸上,點A和點B分別表示數a和b,且在原點的兩側,若=2016,AO=2BO,則a+b=_____13.在一個不透明的空袋子里放入3個白球和2個紅球,每個球除顏色外完全相同,小樂從中任意摸出1個球,摸出的球是紅球,放回后充分搖勻,又從中任意摸出1個球,摸到紅球的概率是
____
.14.在Rt△ABC中,∠C=90°,sinA=,那么cosA=________.15.為慶祝“六一”兒童節,某幼兒園舉行用火柴棒擺“金魚”比賽.如圖所示,按照這樣的規律,擺第n個圖,需用火柴棒的根數為_______________.16.釣魚島周圍海域面積約為170000平方千米,170000用科學記數法表示為______.17.已知:如圖,AB是⊙O的直徑,弦EF⊥AB于點D,如果EF=8,AD=2,則⊙O半徑的長是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平行四邊形ABCD中,BD是對角線,∠ADB=90°,E、F分別為邊AB、CD的中點.(1)求證:四邊形DEBF是菱形;(2)若BE=4,∠DEB=120°,點M為BF的中點,當點P在BD邊上運動時,則PF+PM的最小值為,并在圖上標出此時點P的位置.19.(5分)如圖,已知點A,B的坐標分別為(0,0)、(2,0),將△ABC繞C點按順時針方向旋轉90°得到△A1B1C.(1)畫出△A1B1C;(2)A的對應點為A1,寫出點A1的坐標;(3)求出B旋轉到B1的路線長.20.(8分)如圖,一次函數y1=kx+b(k≠0)和反比例函數y2=(m≠0)的圖象交于點A(-1,6),B(a,-2).求一次函數與反比例函數的解析式;根據圖象直接寫出y1>y2時,x的取值范圍.21.(10分)在△ABC中,∠ACB=45°.點D(與點B、C不重合)為射線BC上一動點,連接AD,以AD為一邊且在AD的右側作正方形ADEF.(1)如果AB=AC.如圖①,且點D在線段BC上運動.試判斷線段CF與BD之間的位置關系,并證明你的結論.(2)如果AB≠AC,如圖②,且點D在線段BC上運動.(1)中結論是否成立,為什么?(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設AC=4,BC=3,CD=x,求線段CP的長.(用含x的式子表示)22.(10分)桌面上放有4張卡片,正面分別標有數字1,2,3,4,這些卡片除數字外完全相同.把這些卡片反面朝上洗勻后放在桌面上,甲從中任意抽出一張,記下卡片上的數字后仍放反面朝上放回洗勻,乙從中任意抽出一張,記下卡片上的數字,然后將這兩數相加.(1)請用列表或畫樹狀圖的方法求兩數和為5的概率;(2)若甲與乙按上述方式做游戲,當兩數之和為5時,甲勝;反之則乙勝;若甲勝一次得12分,那么乙勝一次得多少分,才能使這個游戲對雙方公平?23.(12分)如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.寫出圖中小于平角的角.求出∠BOD的度數.小明發現OE平分∠BOC,請你通過計算說明道理.24.(14分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C為圓心,R為半徑所作的圓與斜邊AB只有一個公共點,則R的取值范圍是多少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題分析:作點P關于OA對稱的點P3,作點P關于OB對稱的點P3,連接P3P3,與OA交于點M,與OB交于點N,此時△PMN的周長最小.由線段垂直平分線性質可得出△PMN的周長就是P3P3的長,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點:3.線段垂直平分線性質;3.軸對稱作圖.2、D【解析】
依據三角形外角性質,角平分線的定義,以及平行線的性質,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,進而得到結論.【詳解】解:∵∠ACD是△ABC的外角,∴∠ACD=∠BAC+∠B,∵CE平分∠DCA,∴∠ACD=2∠ACE,∴2∠ACE=∠BAC+∠B,故A選項正確;∵EF∥BC,CF平分∠BCA,∴∠BCF=∠CFE,∠BCF=∠ACF,∴∠ACF=∠EFC,∴OF=OC,同理可得OE=OC,∴EF=2OC,故B選項正確;∵CF平分∠BCA,CE平分∠ACD,∴∠ECF=∠ACE+∠ACF=×180°=90°,故C選項正確;∵O不一定是AC的中點,∴四邊形AECF不一定是平行四邊形,∴四邊形AFCE不一定是矩形,故D選項錯誤,故選D.【點睛】本題考查三角形外角性質,角平分線的定義,以及平行線的性質.3、C【解析】
先利用待定系數法求函數解析式,然后將y=35代入,從而求解.【詳解】解:設反比例函數關系式為:,將(7,100)代入,得k=700,∴,將y=35代入,解得;∴水溫從100℃降到35℃所用的時間是:20-7=13,故選C.【點睛】本題考查反比例函數的應用,利用數形結合思想解題是關鍵.4、C【解析】A、由反比例函數的圖象在一、三象限可知k>0,由一次函數的圖象過二、四象限可知k<0,兩結論相矛盾,故選項錯誤;B、由反比例函數的圖象在二、四象限可知k<0,由一次函數的圖象與y軸交點在y軸的正半軸可知k>0,兩結論相矛盾,故選項錯誤;C、由反比例函數的圖象在二、四象限可知k<0,由一次函數的圖象過二、三、四象限可知k<0,兩結論一致,故選項正確;D、由反比例函數的圖象在一、三象限可知k>0,由一次函數的圖象與y軸交點在y軸的負半軸可知k<0,兩結論相矛盾,故選項錯誤,故選C.5、D【解析】
分兩種情形討論當點P順時針旋轉時,圖象是③,當點P逆時針旋轉時,圖象是①,由此即可解決問題.【詳解】解:當點P順時針旋轉時,圖象是③,當點P逆時針旋轉時,圖象是①.故選D.6、D【解析】
從圖中可以看出,線段AB掃過的圖形面積為一個環形,環形中的大圓半徑是AC,小圓半徑是BC,圓心角是60度,所以陰影面積=大扇形面積-小扇形面積.【詳解】陰影面積=π.
故選D.【點睛】本題的關鍵是理解出,線段AB掃過的圖形面積為一個環形.7、B【解析】
根據垂徑定理及圓周角定理進行解答即可.【詳解】∵AB是⊙O的直徑,∴∠ACB=90°,故A正確;∵點E不一定是OB的中點,∴OE與BE的關系不能確定,故B錯誤;∵AB⊥CD,AB是⊙O的直徑,∴,∴BD=BC,故C正確;∴,故D正確.故選B.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關鍵.8、B【解析】
①根據函數的圖象即可直接得出結論;②求得直線OA和DC的解析式,求得交點坐標即可;③由圖象無法求得B的橫坐標;④分別進行運算即可得出結論.【詳解】由題意和圖可得,轎車先到達乙地,故選項A錯誤,轎車在行駛過程中進行了提速,故選項B正確,貨車的速度是:300÷5=60千米/時,轎車在BC段對應的速度是:千米/時,故選項D錯誤,設貨車對應的函數解析式為y=kx,5k=300,得k=60,即貨車對應的函數解析式為y=60x,設CD段轎車對應的函數解析式為y=ax+b,,得,即CD段轎車對應的函數解析式為y=110x-195,令60x=110x-195,得x=3.9,即貨車出發3.9小時后,轎車追上貨車,故選項C錯誤,故選:B.【點睛】此題考查一次函數的應用,解題的關鍵在于利用題中信息列出函數解析式9、D【解析】
由tanA的值,利用銳角三角函數定義設出BC與AC,進而利用勾股定理表示出AB,由周長為60求出x的值,確定出兩直角邊,即可求出三角形面積.【詳解】如圖所示,由tanA=125設BC=12x,AC=5x,根據勾股定理得:AB=13x,由題意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,則△ABC面積為120,故選D.【點睛】此題考查了解直角三角形,銳角三角函數定義,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.10、A【解析】
用最高氣溫減去最低氣溫,再根據有理數的減法運算法則“減去一個數等于加上這個數的相反數”即可求得答案.【詳解】8-(-2)=8+2=10℃.即這天的最高氣溫比最低氣溫高10℃.故選A.二、填空題(共7小題,每小題3分,滿分21分)11、2.85×2.【解析】
根據科學記數法的定義,科學記數法的表示形式為a×20n,其中2≤|a|<20,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數是大于或等于2還是小于2.當該數大于或等于2時,n為它的整數位數減2;當該數小于2時,-n為它第一個有效數字前0的個數(含小數點前的2個0).【詳解】解:28500000一共8位,從而28500000=2.85×2.12、-672或672【解析】∵,∴a-b=±2016,∵AO=2BO,A和點B分別在原點的兩側∴a=-2b.當a-b=2016時,∴-2b-b=2016,解得:b=-672.∴a=?2×(-672)=1342,∴a+b=1344+(-672)=672.同理可得當a-b=-2016時,a+b=-672,∴a+b=±672,故答案為:?672或672.13、【解析】【分析】袋子中一共有5個球,其中有2個紅球,用2除以5即可得從中摸出一個球是紅球的概率.【詳解】袋子中有3個白球和2個紅球,一共5個球,所以從中任意摸出一個球是紅球的概率為:,故答案為.【點睛】本題考查了概率的計算,用到的知識點為:可能性等于所求情況數與總情況數之比.14、【解析】∵Rt△ABC中,∠C=90°,∴sinA=,∵sinA=,∴c=2a,∴b=,∴cosA=,故答案為.15、6n+1.【解析】尋找規律:不難發現,后一個圖形比前一個圖形多6根火柴棒,即:第1個圖形有8根火柴棒,第1個圖形有14=6×1+8根火柴棒,第3個圖形有10=6×1+8根火柴棒,……,第n個圖形有6n+1根火柴棒.16、【解析】解:將170000用科學記數法表示為:1.7×1.故答案為1.7×1.17、1.【解析】試題解析:連接OE,如下圖所示,則:OE=OA=R,∵AB是⊙O的直徑,弦EF⊥AB,∴ED=DF=4,∵OD=OA-AD,∴OD=R-2,在Rt△ODE中,由勾股定理可得:OE2=OD2+ED2,∴R2=(R-2)2+42,∴R=1.考點:1.垂徑定理;2.解直角三角形.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2).【解析】
(1)根據直角三角形斜邊上的中線等于斜邊的一半,以及平行四邊形的對邊相等證明四邊形DEBF的四邊相等即可證得;(2)連接EM,EM與BD的交點就是P,FF+PM的最小值就是EM的長,證明△BEF是等邊三角形,利用三角函數求解.【詳解】(1)∵平行四邊形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.∵△ABD中,∠ADB=90°,E時AB的中點,∴DE=AB=AE=BE.同理,BF=DF.∵平行四邊形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四邊形DEBF是菱形;(2)連接BF.∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等邊三角形.∵M是BF的中點,∴EM⊥BF.則EM=BE?sin60°=4×=2.即PF+PM的最小值是2.故答案為:2.【點睛】本題考查了菱形的判定與性質以及圖形的對稱,根據菱形的對稱性,理解PF+PM的最小值就是EM的長是關鍵.19、(1)畫圖見解析;(2)A1(0,6);(3)弧BB1=.【解析】
(1)根據旋轉圖形的性質首先得出各點旋轉后的點的位置,然后順次連接各點得出圖形;(2)根據圖形得出點的坐標;(3)根據弧長的計算公式求出答案.【詳解】解:(1)△A1B1C如圖所示.(2)A1(0,6).(3).【點睛】本題考查了旋轉作圖和弧長的計算.20、(1)y1=-2x+4,y2=-;(2)x<-1或0<x<1.【解析】
(1)把點A坐標代入反比例函數求出k的值,也就求出了反比例函數解析式,再把點B的坐標代入反比例函數解析式求出a的值,得到點B的坐標,然后利用待定系數法即可求出一次函數解析式;(2)找出直線在一次函數圖形的上方的自變量x的取值即可.【詳解】解:(1)把點A(﹣1,6)代入反比例函數(m≠0)得:m=﹣1×6=﹣6,∴.將B(a,﹣2)代入得:,a=1,∴B(1,﹣2),將A(﹣1,6),B(1,﹣2)代入一次函數y1=kx+b得:,∴,∴;(2)由函數圖象可得:x<﹣1或0<x<1.【點睛】本題考查反比例函數與一次函數的交點問題,利用數形結合思想解題是本題的關鍵.21、(1)CF與BD位置關系是垂直,理由見解析;(2)AB≠AC時,CF⊥BD的結論成立,理由見解析;(3)見解析【解析】
(1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可證△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(2)過點A作AG⊥AC交BC于點G,可得出AC=AG,易證:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設AC=1,BC=3,CD=x,求線段CP的長.考慮點D的位置,分兩種情況去解答.①點D在線段BC上運動,已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x,易證△AQD∽△DCP,再根據相似三角形的性質求解問題.②點D在線段BC延長線上運動時,由∠BCA=15°,可求出AQ=CQ=1,則DQ=1+x.過A作AQ⊥BC交CB延長線于點Q,則△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根據相似三角形的性質求解問題.【詳解】(1)CF與BD位置關系是垂直;證明如下:∵AB=AC,∠ACB=15°,∴∠ABC=15°.由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90°,∴∠DAB=∠FAC,∴△DAB≌△FAC(SAS),∴∠ACF=∠ABD.∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)AB≠AC時,CF⊥BD的結論成立.理由是:過點A作GA⊥AC交BC于點G,∵∠ACB=15°,∴∠AGD=15°,∴AC=AG,同理可證:△GAD≌△CAF∴∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°,即CF⊥BD.(3)過點A作AQ⊥BC交CB的延長線于點Q,①點D在線段BC上運動時,∵∠BCA=15°,可求出AQ=CQ=1.∴DQ=1﹣x,△AQD∽△DCP,∴,∴,∴.②點D在線段BC延長線上運動時,∵∠BCA=15°,∴AQ=CQ=1,∴D
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025租房合同范文2
- 公路應急搶修合同樣本
- 農行 貸款合同樣本
- 2025房產個人分銷合同
- 農村環衛勞務合同樣本
- 2025年中小學食堂食品定點供應合同
- 農業林地收購合同標準文本
- 企業轉正定級合同標準文本
- 入住代辦服務合同標準文本
- 急診工作的重要性計劃
- 幼兒園安全制度
- 2025屆蘇錫常鎮四市高三二模試題英語試題試卷含解析
- 廣東省廣州市花都區2022-2023學年二年級下學期數學期中檢測練習卷
- 探討DeepSeek對出版業的數字化轉型支持
- 管理學基礎-形考任務二-國開-參考資料
- 2025年江蘇淮安市漣水縣安東控股集團招聘筆試參考題庫含答案解析
- 2025年中央一號文件參考試題庫100題(含答案)
- 物資出入庫管理制度范本
- 世界地圖矢量圖和各國國旗 world map and flags
- 銀行借款合同變更協議
- 外科主治醫師資格考試(專業代碼317)題庫
評論
0/150
提交評論