朱集煤礦0.9 Mt-a新井設計 -煤礦井下無軌膠輪車的運用現狀及發展趨勢_第1頁
朱集煤礦0.9 Mt-a新井設計 -煤礦井下無軌膠輪車的運用現狀及發展趨勢_第2頁
朱集煤礦0.9 Mt-a新井設計 -煤礦井下無軌膠輪車的運用現狀及發展趨勢_第3頁
朱集煤礦0.9 Mt-a新井設計 -煤礦井下無軌膠輪車的運用現狀及發展趨勢_第4頁
朱集煤礦0.9 Mt-a新井設計 -煤礦井下無軌膠輪車的運用現狀及發展趨勢_第5頁
已閱讀5頁,還剩161頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

本科生畢業設計(論文)題目:朱集煤礦0.9Mt/a新井設計 煤礦井下無軌膠輪車的運用現狀及發展趨勢摘要一般部分針對淮南朱集礦井進行了井型為0.9Mt/a的新井設計。朱集礦井位于安徽省淮南市境內,井田走向長約7.0km,傾向長約3.0km,面積約21km2。主采煤層為13-1#煤層,平均傾角2~5°,平均厚度4m。井田工業儲量為113.12Mt,可采儲量53.09Mt,礦井服務年限為42.1a。礦井正常涌水量為342m3/h,最大涌水量為462m3/h;礦井相對瓦斯涌出量為10.3m3/t,屬高瓦斯礦井。根據井田地質條件,設計采用雙立井單水平開拓方式,井田采用全帶區式布置方式,共劃分為八個帶區,兩個盤區,軌道大巷、膠帶機大巷和回風大巷皆為巖石大巷,布置在13-1#煤層底板巖層中。考慮到本礦井為高瓦斯礦井,礦井通風方式采用兩翼對角式通風,并在開采前預掘底板瓦斯抽排巷進行瓦斯提前卸壓抽放。針對東一帶區采用了帶區準備方式,共劃分7個分帶工作面,并進行了運煤、通風、運料、排矸、供電系統設計。針對13101工作面進行了采煤工藝設計。該工作面煤層平均厚度為4.0m,平均傾角3°,直接頂為泥巖,老頂為細砂巖。工作面采用長壁綜采一次采全高采煤法。采用雙滾筒采煤機割煤,往返一次割兩刀。采用“三八制”工作制度,兩班半生產,半班檢修,截深0.8m,每天5個循環,循環進尺4.0m,月推進度120m。大巷采用膠帶輸送機運煤,輔助運輸采用蓄電池式電機車牽引固定箱式礦車。主井采用兩套帶平衡錘的16t箕斗提煤,副井采用一對1.5t礦車雙層四車窄罐籠和一個帶平衡錘的1.5t礦車雙層四車寬罐籠運料和升降人員。專題部分題目為《國內外無軌膠輪車的運用現狀及發展趨勢》,結合在神東礦區、濟三礦的運用,介紹了無軌膠輪車的性能特點,運用現狀,主要車型,以及國產化進程,最后展望無軌膠輪車的發展趨勢。翻譯部分題目為《Anewcoalpillarsdesignmethodinordertoenhancesafetyoftheretreatmininginroomandpillarsmines》,主要介紹了一種在利用房柱式開采時,可以提高煤柱安全性的煤柱設計方法。關鍵詞:朱集煤礦;雙立井;帶區布置;兩翼對角式;綜采;沿空留巷;無軌膠輪車ABSTRACTThegeneraldesignisabouta0.9Mt/anewundergroundminedesignofZhujicoalmine.ZhujicoalmineislocatedinHuainan,Anhuiprovince.It’sabout7.0kmonthestrikeand3.2kmonthedip,withthe21.0km2totalhorizontalarea.Theminablecoalseamis13-1#withanaveragethicknessof4.0mandanaveragedipof3°.Theprovedreservesofthiscoalmineare113.12Mtandtheminablereservesare53.09Mt,withaminelifeof42.1a.Thenormalmineinflowis342m3/handthemaximummineinflowis462m3/h.Theminegasemissionrateis10.3m3/t,whichcanberecognizedashighgasmine.Basedonthegeologicalconditionofthemine,thisdesignusesaduel-verticalshaftsingle-leveldevelopmentmethod,andfullstrippreparation,whichdividedintoeightbandsandtwodistricts,andtrackroadway,beltconveyorroadwayandreturnairwayareallrockroadways,arrangedinthefloorrockof13-1#coalseam.Takingintoaccountofthehighgasemission,mineventilationmethodusetwodiagonalwingsventilation,andexcavesbottomgasdrainageroadwaybeforeminingtoreliefgaspressureinadvance.ThedesignappliesstrippreparationagainstthefirstbandofEastOnewhichdividedinto5stirpstotally,andconductedcoalconveyance,ventilation,gangueconveyanceandelectricitydesigning.Thedesignconductedcoalminingtechnologydesignagainstthe13101face.Thecoalseamaveragethicknessofthisworkingfaceis4.0mandtheaveragedipis3°,theimmediateroofismudstoneandthemainroofissandstone.Theworkingfaceappliesfullymechanizedlongwallfull-heightcoalcavingmethod,andusesdoubledrumshearercuttingcoalwhichcutstwiceeachworkingcycle."Three-Eight"workingsystemhasbeenusedinthisdesignandthedepth-webis0.8mwithfiveworkingcyclesperday,andtheadvanceofaworkingcycleis4.0mandtheadvanceis120mpermonth.Mainroadwaymakesuseofbeltconveyortotransportcoalresource,andbatterylocomotivetobeassistanttransport.Themainshaftusesdouble16tskipstoliftcoalwithabalancehammerandtheauxiliaryshaftusesatwinsnarrow1.5tfour-cardouble-deckcageandawide1.5tfour-cardouble-deckcagetoliftmaterialandpersonneltransportation.Theprojectsectionon"theuseofthetracklessrubber_tyredcarathomeandabroadpresentsituationanddevelopingtrend",IncombinationwiththeapplicationinShenDongminingarea,JiSanMine,thispaperintroducestheperformancecharacteristicsoftracklessrubber_tyredcar,usingsituation,mainmodels,andthelocalizationprocessandthefuturedevelopmenttrendoftracklessrubber_tyredcar.Thetitleofthetranslatedacademicpaperis"Anewcoalpillarsdesignmethodinordertoenhancesafetyoftheretreatmininginroomandpillarsmines".Mainlyintroducesanewtypeofroomandpillarmining,canimprovethesafetyofcoalpillarcoalpillardesignmethod.Keywords:Zhujicoalmine;doubleverticalshaft;bandmode;twodiagonalwingsventilation;comprehensivemechanizedmining;gob-sideentryretaining;tracklessrubber_tyredcar 第頁英文原文AnewcoalpillarsdesignmethodinordertoenhancesafetyoftheretreatmininginroomandpillarsminesE.Ghasemi*,K.ShahriarDepartmentofMiningofandMetallurgicalEngineering,AmirkabirUniversityofTechnology,Tehran,IranAbstract:Mostoftheproposedmethodsofcoalpillardesigndeterminepillardimensionsusingpillarestimationonlythroughthetributaryareatheory.Designingpillarbasedonthesemethodsisnotappropriateinroomandpillarmineswithpillarrecoverybecauseretreatminingandgobcreationgenerateabutmentloads.Neglectingabutmentloadsindesignstagemayleadtopillarfailureanddestructiveeffectsduringretreatmining.Thusproperpillardesignhasaremarkableeffectonminingeffectonminingsafety.Inthispaper,astep-bu-stepmethodispresentedtodesignpillarswithsquareshapeinroomandpillarmineswithregardtoexistingpillarsintheactiveminingzone(AMZ)andestimatingabutmentloadsaccordingtoexperiment-method.ThismethodhasbeenappliedtodetermineoptimumpillardimensionsinthemainpanelofTabasCentalMine(TCM),locatedinthemid-easternpartofIran.Obtainedresultsshowtheabutmentloadsaccountfor27%ofthetotalloadsappliedonpillarsinAMZinthispanel.Pillarwidth,basedonthismethod,isalsoobtained11.6m.Keywords:Pillardesign;Roomandpillar;Retreatmining;Activeminingzone;AbutmentloadsIntroductionInundergroundcoalmining,roomandpillaristhemethodofworkingpreferableforflat,tabulardepositsinthinseams,whereroomsofentriesaredriveninthesolidcoaltoformpillarsinthedevelopmentpanels(Hustrulid,1982;Hartman,1978).Pillarsofcoalareleftbehindtosupporttheroofandpreventitscollapse,therebyallowingminerstoextractcoalbetweenthemandtotravelsafely.Insomecases,thepillarsareremovedpartlyorfullyinalateroperation,knownasretreatmining(alsoknownassecondaryminingorpillarrecoveryoperation).Coalminepillardesignhasbeenthesubjectofsustainedandintensiveresearchinthemajorcoalproducingcountriesintheword.Pillardesignandstabilityaretwoofthemostcomplicatedandextensiveproblemsinminingrelatedtorockmechanicsandgroundcontrolsubjects.Althoughtheseproblemshavebeeninvestigatedforalongtime,todateonlyalimitedunderstandingofthesubjecthasbeengained.ThesubjectofpillardesignintheUSgoesbacknearlyacentry.Priortothisthedimensionsofpillarwerelargelydeterminedrulesofthumbsuchresearchastherewastendedtobeisolatedandsporadic.Butnowadays,variouspillardesignformulasaredeveloped,baseduponlaboratorytesting,full-scalepillartesting,andback-analysisoffailedandsuccessfulcasehistories.In1980,fieldstudiesconductedbytheUSBureauofMineshasdevelopedtheclassicpillardesignmethodology.Itconsistedofthreesteps(Mark,2006):1.Estimatingthepillarload;2.Estimatingthepillarstrength,and3.Calculatingthepillarsafetyfactor.Thaveragepillar,inregularlayoutsofpillarscanbeestimatedbytributary-areatheory,eachindividualpillarisassumedtocarrytheweightoftheoverburdenimmediatelyaboveit.Intheotherwords,apillaruniformlysupportstheweightofrockoverlyingthepillarandone-halfthewidthofroomsandentriesoneachsideofthepillar(Peng,1978).Pillarstrengthcanbedefinedasthemaximumresistanceofapillartoaxialcompression(BradyandBrown,1993).Empiricalevidencesuggeststhatpillarstrengthisrelatedtobothitsvolumeanditsshape(SalamonandMunro,1967;BradyandBrown,1993).Numerousformulashavebeendevelopedthatcanbeusedtoestimatethestrengthofpillarsincoalmines,whichTable1showsthemostapplicableofthem.Eachoftheseformulasestimatesthetopillarstrengthintermsoftwovarious;widthtoheightrationandinsitucoalstrength.Bieniawski(1981)representedverygoodclassicapproachtopillardesign.Heatfistdescribedtheissuesinvolvedinpillardesign,andadvantagesandshortcomingsoftheavailablemethodsandthenrepresentedalogical,step-by-stepapproachtodeterminethecoalpillarsdimensionsinroomandpillarmines.Table1 Mostapplicableofempiricalstrengthformulaforcoalpillars.Pillarstrengthformulas(MPa)ReferencePillarcross-sectionRemarksSalamonandMunro(1967)SquareBieniawski(1968)Square—Madden(1991)SquareMarkandChase(1997)Square—Nowadaysinmostoftheroomandpillarminesinordertoincreaserecoveryandproductivity,remanentpillarsinpanelsarerecoveredbyretreatmining.Since,theabovementionedmethodsarenotappropriateforpillardesignbecausethesemethodsneglecttheabutmentloadsduetoretreatminingandcreationofaminedoutgob.Abutmentloadsaffectonthepillarintheadjacentofpillarlineandaloadmorethantheoneestimatedbutributaryareatheoryappliedonpillar(MarkandChase,1997;Peng,1978).StudiesconductedbyvanderMerwe(19990)confirmtheincreaseofloadonthepillarsintheadjacentofthepillarline.Hecalculatedtheactualloadappliedonthepillarduringpillarrecoveryusingatwodimensionalboundaryelementmodelandestimatedthepillarsafetyfactorforthiscondition.Pillardesignwithouttheabutmentloadstofailureofpillarduringretreatmining.Pillarfailurescontinuetobeonethegreatestsinglehazardsfacedbyundergroundcoalminer,Pillarfailureresponsibleforunsatisfactoryconditionsincludes(Marketal.,2003):1.Pillarsqueeze,2.Massivepillarcollapse,and3.Coalpillarbumps.Theoccurrenceofpillarfailureinundergroundminesentailsdetrimentaleffectsonminersintheformofinjury,disabilityorfatalityaswellasminingcompanyduetodowntimes,interruptionsintheminingoperations,equipmentbreakdowns,etc.Forexamplein1992,airblastsduetopillarfailureatasouthernWestVirginiamineledtodestroyingof103ventilationstopping(Marketal.,1997).OnAugust6th,2007,violentcoalbumpoccurredinCrandallCanyonMineinUtah,andcausedtheentrappingofsixothers(Heasley,2009a).So,properpillardesignisthekeytopreventofpillarfailureandtheAnalysisofRetreatMiningPillarStability(ARMPS)programsareusedsuccessfullyfordesigningsaferetreatmining(Tuluetal.,2010).LaModelisaPC-basedprogramforcalculatingthestressesanddisplacementincoalminesorotherthinseamorveintypedeposits(HeasleyandBarton,1999;Heasley,2009b).Itisprimarilydesignedtobeutilizedbyminingengineersforinvestigatingandoptimizingpillardimensionsandlayoutsinrelationtooverburden,abutmentandmultipleseamstresses.Theprogramwasdevelopedbasedondisplacement-discontinuityvariationoftheboundaryelementmethod.MarkandChase(1997)developedtheARMPSprogrambasedonempiricalequations.ARMPSconsideringtheactiveminingzone(AMZ)calculatesstabilityfactor(ARMPSSF)basedonestimatesoftheloadsappliedto,andtheload-bearingcapacitiesof,pillarsduringretreatmining.Morethan150casesofretreatminingwerecollectedinUStoverifytheprogram(ARMPShelp,2008).Analysesofallthesecasesshowthatpillarsqueezeisthemostfrequenttypeoffailureandoccursinabouttwothirdsofcases.14casesofpillarsuddencollapseswereobserved,whichineverycaseoccurredwhentheARMPSSFwaslessthan1.5andwherethepillarwidthtoheightrationislessthan3.Allbut3ofthe17bumpsoccurredwhenthedepthofcoverexceeded400m.MarkandChase(1997)understoodthatalmostnoconsiderablemassivepillarcollapsesoccurswhenthepillarwidthtoheightrationmorethan4isselected.Theyalsoobservedwhenthedepthofcoverislessthan200m;theminimumrequiredstabilityfactortopreventmassivepillarcollapsesis1.5.Oneofthekeystominerssaftyandefficientrecoveryofthereservesistodesignsufficientlysizedpillarsthatwillpreventpillarsqueezes,excessivepillarspallingseverefloorheave,rooffalls,andpillarbumps.Regardingtheabovementionedcomments,anewmethodtodesigncoalpillarswithsquareshapeinroomandpillarminesispresentedinthefollowingsections.Theproposedmethodissuitableindeterminingoptimumpillardimensionsinroomandpillarmineswhereremanent,pillarsaresupposedtobeextractedafterpreliminaryminingcompletion.Thismethod,inadditiontoconsideringabutmentloads,lowerspillarfailurerisk.Thegoalofthismethodistohelpensurethatthepillarsdevelopedforfutureextractionareofadequatesizeforallanticipatedloadingconditions.MethodologySimilartotheARMPSprogram,theproposedmethodinthispaperconsidersthepillarsintheactiveminingzone(AMZ)becausethesepillarsareexposedtomaximumloadthroughoutminingprocessthereforethepillardimensionsobtainedbythismethodismoresatisfactory.Beforedescribingthedesignmethod,adescribingontheAMZisnecessary.AsshowninFig.1,AMZincludesallofthepillarsontheextractionfront(orpillarline),andextendsoutbythepillarlineadistanceof5timesthesquarerootofthedepthofcover.ThiswidthofAMZwasselectedbecausemeasurementsofabutmentloadfallswithinitsboundaries(MarkandChase,1997).Theproposedmethodisbasedinfiveprinciples(Ghasemietal.,2010a):CalculatingthemaximumloadappliedonthepillarsinAMZ(includingdevelopmentload,abutmentloads),Calculatingtheoverallload-bearingcapacityofpillarsinAMZ,Selectinganappropriatesafetyfactor,Calculatingthepillarwidth,andCorrectingthepillarwidthtofindtheoptimumpillarwidth.Themethodismadeupoftwelvestepswhicharedescribedbelow.Fig,2alsoillustratesdifferentstepsofthismethodinaflow-chartplot.ThesymbolsusedhereareprovidedinTable2.2.1.Step1:GatheringessentialdataEssentialdatatodeterminetheoptimumpillardimensionsinthismethodareasfollowing:Fig.1.SchematicshowoftheAMZ(MarkandChase,1997)Depthofcover:averageoverburdenthicknessoverthepillarsystem.Pillarheight(Miningheight):notethatthevalueofpillarheightisnotnecessarilyequaltotheseamthickness.Entrywidth:entrywidthisusuallydeterminedbaseonroofrockquality,productionrateandoperationalwidthofequipments.Inthismethod,crosscutsareassumedtohavethesamewidthastheentries.Insitucoalstrength.Meanunitweightoftheoverburden.Abutmentangle:theabutmentangledetermineshowmuchloadiscarriedbygob.Measurementoflongwallabutmentloadsindicatedthatanabutmentangle21°isappropriatefornormalcavingconditions.Forexample,ifnocavinghasoccurredabutmentangleis90°namelyzeroloadtransfertothegob(MarkandChase,1997).Panelwidth:panelwidthisusuallydeterminedbaseongeotechnicalconditions,stressstateintheregion,economiccriteria,andenvironmentalconditions.Panelwidthaffectsonstressdistributionloadingconditionsandcavingmechanism.Anincreaseinpanelwidthresultsinanincreaseoftheabutmentloadsappliedonthepillarsadjacenttothegobarea.Thetensionzoneheightdevelopedintheroofofthegobareaalsoincreaseasthepanelwidthincreaseandmayleadtoalargefailureinoverburden(Bieniawski,1987).Basedonwidthtodepthration(P/H),panelaredividedintocategories:·Sub-criticalpanels(P/H<2tanβ),and·Super-criticalpanels(P/H≥2tanβ).CoalMineRoofRating(CMRR):thisindexisusedtoevaluateroofrockquality.In1994theCMRRwasdevelopedtofillthegapbetweengeologiccharacterizationandengineeringdesign(MarkandMolinda,2005).Thisclassificationsystemconsidersgeotechnicalfactorssuchasroofrockstrength,beddingandotherdiscontinuities,moisturesensitivityoftheroofrock,groundwater,etc.CMRRvariesbetweenzeroand100.Basedonthisindex,roofrocksincoalminesareputinthreecategories(Chaseetal.,2002):·Weak(CMRR<45),·Intermediate(45<CMRR<65),and·Strong(CMRR>65).2.2.Step2:CalculatingAMZdimensionsAMZlengthandwidtharedeterminedfromEqs.(1)and(2)respectively: (1) (2)2.3.Step3:CalculatingdevelopmentloadDevelopmentloadareresultedfromtheoverburdenweightoveractiveminingzone.Basedontributaryareatheory,developmentloadsareobtainedfromthefollowingequation: (3)2.4.Step4:CalculatingthemaximumfrontabutmentloadRetreatminingstartswiththeextractionofthepanelpillars.Whenenoughofpillarshavebeenextracted,theoverburdenstrataabovetheextractedpillarsstarttocave.Asaresultofthisroofcaving,theactivegobiscarriedbythegob,butaconsiderableamountoftheoriginaloverburdenloadoverthegobistransferredtothepillarsinAMZandbarrierpillarsasafrontabutmentload(seeFig.1).Frontabutmentloadiscalculatedbasedonabutmentangleconcept(Mark,1992;Tuluetal.,2010)anditsdistributionisdifferentinsub-criticalandsuper-criticalpanels(seeFig.3).Dependingonwhetherthepanelissub-criticalorsuper-critical,themaximumfrontabutmentloadisgivenbuEqs.(4)and(5)respectively(Ghasemietal.,2010a): (4) (5)2.5.Step5:CalculatingsideabutmentloadThegobareabesidetheminingpanelisthesourceofsideabutmentload.Twogobareasmayexistbesideeachminingpanel.ThesideabutmentloadissharedbetweenthebarrierpillarandtheAMZ.Thisloadthesameasfrontabutmentiscalculatedbyabutmentangleconcept.GobareawidthandbarrierwidtharerequiredtocalculatesideabutmentloadappliedonAMZ.DependingloadisgivenbyEqs.(6)and(7)respectively(ARMPShelp,2008): (6) (7)Inbothofthem,regarding Eqs.(8),Ris: (8)FactorRistransferratethatshowsthepercentageoftotalsideabutmentloadthatisappliedtoAMZ.2.6.Step6:CalculatingthemaximumloadonAMZThemaximumloadappliedonthepillarsinAMZiscalculatedbysummationofdevelopmentload,maximumfrontabutmentload,andsideabutmentloadaccordingtothefollowingequation: (9)Fig.2.Flowchartforproposedcoalpillarsdesignmethod2.7.Step7:DeterminingnumberofentriesThenumberofexistingentriesisusuallydeterminedbasedonpanelwidth,rockmechanics,operationequipments,andproductionrate.Atleastfourentriesareneeded;oneforaccommodatingtheconveyor,oneforfreshair,andwoothersintwosidesofpaneltotaketheaieout(Stefanko,1983).Economicallyandoperationally,thisnumberofentriesisnotadequateincontinuous(mechanics)miningmethodandatleastfiveentriesshouldbeplannedwhichthisnumberincreasesuptosevenentriesinmineswithhighproductionrate(Hartman,1987).2.8.Step8:Calculatingtheload-bearingcapacityofAMZTheload-bearingcapacityofthepillarsinAMZiscalculatedbysummingtheload-bearingcapacitiesofallofthepillarswithinitsboundaries.Theload-bearingcapacityofeachpillarisdeterminedbumultiplyingtheirstrengthbytheirload-bearingarea(MarkandChase,1997).Inthismethod,pillarstrengthisestimatedusingtheBieniawski'sstrengthformula.ThenumberofexistingpillarsinAMZiscalculatedaccordingtothefollowingequation: (10)Hence,theoverallload-bearingcapacityofpillarsinAMZisgivenbythefollowingequation: (11)2.9.Step9:SelectinganappropriatesafetyfactorTheselectionofanappropriatesafetyfactorcanbebasedonasubjectiveassessmentofpillarperformanceorstatistcalanalysisoffailedandstablecases(SalamonandMunro,1967;Mark,1992).AccordingtothestudiesbyChaseetal.(2002),Table3providessuggestedsafetyfactorsforstabilityofthepillarsinAMZ.Thesevaluesareobtainedfrom250analysesofpaneldesigninUSandasitisseenfromtable,safetyfactordependsonCoalMineRoofRating(CMRR)aswellasdepth.2.10.Step10:CalculatingpillarwidthInthisstep,puttingthesafetyfactorinEqs.(12)andsolvingit,pillarwidthisobtained: (12)2.11.Step11:CorrectingpillarwidthtodecreasethepillarfailureriskAsitispointedoutbefore,oneifthewaystodecreasepillarfailurerisk,especiallylargepillarcollapse,istochooseapillarwidthtoheightrationlargethan4.Inthisstep,iftherationoftheobtainedwidthfromtheprevioussteptopillarheightissmallerthan4,pillarwidthisincreasedsoapillarwidthtoheightrationlargerthan4isreached.Ofcourse,inordertocontrolandavoidexcessiveincreaseofpillarwidth,therecoveryrateistakenintoconsider.Accordingtoexperimentsandconsideringeconomicpurposesinpreliminaryminingstage,themostsuitablerecoveryratevariesfrom40%to60%.Itshouldbenotice0.5misaddedtothepillarwidtheachtimeinthisstep.Table2 UsedsymbolinproposedcoalpillarsdesignmethodSymbolDescription(unit)AMZActiveminingzoneHDepthofcover(m)Renewaltable2pPanelwidth(m)hPillarheight(m)BEntrywidth(m)Meanunitweightoftheoverburden(KN/m3)Abutmentangle(°)AMZlength(m)AMZwidth(m)Developmentload(KN)Maximumfrontabutmentload(KN)Sideabutmentload(KN)Sidegobwidth(m)Barrierpillarwidth(m)Transferrate(%)MaximumloadappliedonAMZ(KN)Pillarstrength(MPa)NumberofentriesNumberofpillarsinAMZOverallload-bearingcapacityofAMZ(KN)SafetyfactorPillarwidth(m)WidthdifferenceOptimumpillarwidth(m)Fig.3.Abutmentangleconceptinsub-criticalandsuper-criticalpanels(Mark,1992)Table3 SuggestedsafetyfactorforstabilityofthepillarsinAMZDepthofcover(m)Weakandintermediateroof()Strongroof()2.12.Step12:DeterminingtheoptimumpillarwidthInthisstep,thewidthobtainedfrompreviousstepiscorrectedsothattheoptimumpillarwidthisdeterminedbasedonthenumberodpillarsineachrowandthepanelwidth.Inordertoatfirst△shouldbecalculatedusingEqs.(13).If△islessthanorequaltothesumofpillarwidthandentrywidth,theoptimumpillarwidthisobtainedfromEqs.(14).Otherwise,thenumberofentriesisaddeddependingon△valueandcalculatingarerepeatedfromstep8: (13) (14)InthefollowingsectionoptimumpillardimensionsinthemainpaneloftheTabasCentralCoalMine,locatedinmid-easternpartofIran,isdeterminedinordertovalidatetheproposedmethodandresultsareinterpreted.ThismineisthefirstmechanizedoneinIrandesignedasaroomandpillarmine.Thepillarsareleftbehindinthisminearesupposedtobeextractedasretreatmininginfutureafterthepreliminaryminingfinishes.Thereforeaproperpillardesigncanhasaremarkableinfluenceonhighersafetyandefficiencyofthereserverecoveryinthismine.TabasCentralCoalMineTabasCentralCoalMine(TCM)isthecasestudieshere,locatedinTabascoalregionapproximately85kmsouthofTabastowninYazdprovinceinmid-easternpartofIran(Fig.4).ThemineisworkingseamC1byroomandpillarmethodusingcontinuousminerandLHD.TheC1seamgradientis1in5(11°)andseamthicknessisabout2m.Theimmediateroofabovetheseamtypicallyisweak(CMRR=37)andconsistof0.1~0.2mthickmudstone,siltstone/sandstoneinterfacesandsandstonechannelsinsomeareaswithin3mwhichhavepotentialtobewater-bearing.Theimmediatefloorisabout1~1.3mofweakseatearth/mudstoneunderlinebystrongermudstones,siltstones/sandstones.Theminablereserveaccountsfor6milliontonesofcokingcoal(CentralMineDesignReport,2005).Theinsitustrengthofcoal,basedonresultsfromuniaxialcompressivetestsandGsddyequations(Bieniawski,1987),is6MPa.AscanbeseeninFig.4thesuggestedlayoutforthismineincludestwoaccessdrifts,amainpanel,andeasternandwesternpanelsinbothsidesonthemainpanel.Themainpanelisinitiallydevelopedin2004withfiveentriesandpillarswith20×20mdistancebetweencenters.Thispanelisdevelopedwithacontinuoushaulagesystemwith4.5mwideentriesandcrosscuts.So,pillarsleftbehindthispanelaresquareshapedandwidthis15.5m.Becauseofweakfloor,thepillarheightisnotequaltotheseamthicknessandis2.6m.Thecurrentrecoveryrateis40%.AccordingtonegotiationswiththetechnicalofficeandthecavingbehaviorobservedinthemineNo.1(neartheTCM),abutmentangleinTCMis25°,sothemainpanelissuper-critical(Ghasemietal.,2010b).Becauseofextractingthepillarsleftbehindintheeasternandwesternpanelspriortobeginningretreatmininginthemainpanel,gobiscreatedinbothsidesofthispanel.ThereforesideabutmentloadshouldbeconsideredincalculationofthemaximumloadappliedonpillarsinAMZ.Thegobareasaresuper-criticalandthebarrierpillarwidthinbothsidesis30m.Accordingtothedescriptionsgiveninthissection,theparametersrequiredinpillardesigninthemainpaneloftheTCMaresummarizedinTable4.Fig.4.LocationandsuggestedlayoutoftheTCMResultsTheresultsofproposedmethodformainpanelofTCMaresummarizedinTable5.BasedonTCMconditions(i.e.,depthofcover=85mandCRMM=37)theminimumsuitablesafetyfactorforpillarsstabilityis1.5(seeTable3).AscanbeseeninTable5thenumberofentriesequaltosixandoptimumpillarwidthequalto11.6mwereobtained.Incomparisonwithoriginalminelayout,oneunitwasaddedtoentrieswhichcanincreasetheproductionrateifefficientmanagementisapplied.Furthermorepillarwidthwasdecreasedremarkably(about4m)whichcauses8%increaseinrecoveryratethatshowstheproposedlayoutissmoreeconomic.Also,itcanbeseenthatthedevelopmentload,frontabutmentloadandsideabutmentloadconstitutes73%,19%and8%ofthetotalloadappliedonpillarsinAMZrespectively.ThenegligiblesideabutmentloadcanbeattributedtothegreatwidthofbarrierandpillarsinAMZsoasthebarrierpillarswidthincrease,themoreloadwillappliedtothem.Toconfirmtheresultsofproposedmethod,optimumpillarandotherrelatedparametersoftheTCMwereenteredasinputdatatoARMPSprogramandacceptablestabilityfactorswereobtained,whichindicatestheminingoperation,inboththepreliminaryandsecondaryminingstage,issafe.Table4 EssentialdataforpillardesignintheTCMParameterValueParameterValueH85m25KN/m3h2.6mβ25oB4.5mP85mS16MPaCMRR37Table5 SummaryforresultsforTCMParameterValueParameterValueLAMZ80.5mML10.87×106KNWAMZ46.1mNE6DL7.89×106KNwp11.6FL2.05×106KNRr248%SL0.93×106KN5.DiscussionandconclusionsPillardesign,especiallyinroomandpillarmines,isoneofthemostimportanttopicsinthefieldofcoalminegroundcontrol.VariousmethodshavebeensuggestedinrecentyearsmostofwhichlikeclassicmethodandBieniawskimethodneglectabutmentloads

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論