




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省邵陽市雙清區第十一中學2024年中考數學考試模擬沖刺卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若不等式組無解,那么m的取值范圍是()A.m≤2 B.m≥2 C.m<2 D.m>22.袋子中裝有4個黑球和2個白球,這些球的形狀、大小、質地等完全相同,在看不到球的條件下,隨機地從袋子中摸出三個球.下列事件是必然事件的是()A.摸出的三個球中至少有一個球是黑球B.摸出的三個球中至少有一個球是白球C.摸出的三個球中至少有兩個球是黑球D.摸出的三個球中至少有兩個球是白球3.下列各數中,最小的數是A. B. C.0 D.4.如圖所示,某公司有三個住宅區,A、B、C各區分別住有職工30人,15人,10人,且這三點在一條大道上(A,B,C三點共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設一個??奎c,為使所有的人步行到停靠點的路程之和最小,那么該??奎c的位置應設在()A.點A B.點B C.A,B之間 D.B,C之間5.不等式組1-x≤0,3x-6<0A. B. C. D.6.某商店有兩個進價不同的計算器都賣了80元,其中一個贏利60%,另一個虧本20%,在這次買賣中,這家商店()A.賺了10元 B.賠了10元 C.賺了50元 D.不賠不賺7.為了解某社區居民的用電情況,隨機對該社區10戶居民進行調查,下表是這10戶居民2015年4月份用電量的調查結果:居民(戶)1234月用電量(度/戶)30425051那么關于這10戶居民月用電量(單位:度),下列說法錯誤的是()A.中位數是50 B.眾數是51 C.方差是42 D.極差是218.下列因式分解正確的是A. B.C. D.9.如圖,在邊長為6的菱形中,,以點為圓心,菱形的高為半徑畫弧,交于點,交于點,則圖中陰影部分的面積是()A. B. C. D.10.如圖,,且.、是上兩點,,.若,,,則的長為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.12.如圖,在矩形ABCD中,AD=5,AB=4,E是BC上的一點,BE=3,DF⊥AE,垂足為F,則tan∠FDC=_____.13.如圖,矩形ABCD的對角線AC與BD交于點O,過點O作BD的垂線分別交AD,BC于E,F兩點.若AC=,∠AEO=120°,則FC的長度為_____.14.將代入函數中,所得函數值記為,又將代入函數中,所得的函數值記為,再將代入函數中,所得函數值記為…,繼續下去.________;________;________;________.15.的相反數是______,的倒數是______.16.如圖所示,點C在反比例函數的圖象上,過點C的直線與x軸、y軸分別交于點A、B,且,已知的面積為1,則k的值為______.17.一個圓錐的高為3,側面展開圖是半圓,則圓錐的側面積是_________三、解答題(共7小題,滿分69分)18.(10分)如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HF與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米).(參考數據:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,,)19.(5分)石獅泰禾某童裝專賣店在銷售中發現,一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節,商店決定采取適當的降價措施,以擴大銷售量,增加利潤,經市場調查發現,如果每件童裝降價1元,那么平均可多售出2件.設每件童裝降價x元時,每天可銷售______件,每件盈利______元;(用x的代數式表示)每件童裝降價多少元時,平均每天贏利1200元.要想平均每天贏利2000元,可能嗎?請說明理由.20.(8分)如圖,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求證:AC=AE+BC.21.(10分)如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,(1)求證:△ACE≌△BCD;(2)若DE=13,BD=12,求線段AB的長.22.(10分)九(1)班同學分成甲、乙兩組,開展“四個城市建設”知識競賽,滿分得5分,得分均為整數.小馬虎根據競賽成績,繪制了如圖所示的統計圖.經確認,扇形統計圖是正確的,條形統計圖也只有乙組成績統計有一處錯誤.(1)指出條形統計圖中存在的錯誤,并求出正確值;(2)若成績達到3分及以上為合格,該校九年級有800名學生,請估計成績未達到合格的有多少名?(3)九(1)班張明、李剛兩位成績優秀的同學被選中參加市里組織的“四個城市建設”知識競賽.預賽分為A、B、C、D四組進行,選手由抽簽確定.張明、李剛兩名同學恰好分在同一組的概率是多少?23.(12分)為了解某市市民上班時常用交通工具的狀況,某課題小組隨機調查了部分市民(問卷調查表如表所示),并根據調查結果繪制了如圖所示的尚不完整的統計圖:根據以上統計圖,解答下列問題:本次接受調查的市民共有人;扇形統計圖中,扇形B的圓心角度數是;請補全條形統計圖;若該市“上班族”約有15萬人,請估計乘公交車上班的人數.24.(14分)為了弘揚學生愛國主義精神,充分展現新時期青少年良好的思想道德素質和精神風貌,豐富學生的校園生活,陶冶師生的情操,某校舉辦了“中國夢?愛國情?成才志”中華經典詩文誦讀比賽.九(1)班通過內部初選,選出了麗麗和張強兩位同學,但學校規定每班只有1個名額,經過老師與同學們商量,用所學的概率知識設計摸球游戲決定誰去,設計的游戲規則如下:在A、B兩個不透明的箱子分別放入黃色和白色兩種除顏色外均相同的球,其中A箱中放置3個黃球和2個白球;B箱中放置1個黃球,3個白球,麗麗從A箱中摸一個球,張強從B箱摸一個球進行試驗,若兩人摸出的兩球都是黃色,則麗麗去;若兩人摸出的兩球都是白色,則張強去;若兩人摸出球顏色不一樣,則放回重復以上動作,直到分出勝負為止.根據以上規則回答下列問題:(1)求一次性摸出一個黃球和一個白球的概率;(2)判斷該游戲是否公平?并說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
先求出每個不等式的解集,再根據不等式組解集的求法和不等式組無解的條件,即可得到m的取值范圍.【詳解】由①得,x<m,由②得,x>1,又因為不等式組無解,所以m≤1.故選A.【點睛】此題的實質是考查不等式組的求法,求不等式組的解集,要根據以下原則:同大取較大,同小較小,小大大小中間找,大大小小解不了.2、A【解析】
根據必然事件的概念:在一定條件下,必然發生的事件叫做必然事件分析判斷即可.【詳解】A、是必然事件;B、是隨機事件,選項錯誤;C、是隨機事件,選項錯誤;D、是隨機事件,選項錯誤.故選A.3、A【解析】
應明確在數軸上,從左到右的順序,就是數從小到大的順序,據此解答.【詳解】解:因為在數軸上-3在其他數的左邊,所以-3最??;故選A.【點睛】此題考負數的大小比較,應理解數字大的負數反而?。?、A【解析】
此題為數學知識的應用,由題意設一個??奎c,為使所有的人步行到??奎c的路程之和最小,肯定要盡量縮短兩地之間的里程,就用到兩點間線段最短定理.【詳解】解:①以點A為??奎c,則所有人的路程的和=15×100+10×300=1(米),②以點B為??奎c,則所有人的路程的和=30×100+10×200=5000(米),③以點C為停靠點,則所有人的路程的和=30×300+15×200=12000(米),④當在AB之間停靠時,設??奎c到A的距離是m,則(0<m<100),則所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤當在BC之間停靠時,設停靠點到B的距離為n,則(0<n<200),則總路程為30(100+n)+15n+10(200﹣n)=5000+35n>1.∴該停靠點的位置應設在點A;故選A.【點睛】此題為數學知識的應用,考查知識點為兩點之間線段最短.5、D【解析】試題分析:1-x≤0①3x-6<0②,由①得:x≥1,由②得:x<2,在數軸上表示不等式的解集是:,故選D.考點:1.在數軸上表示不等式的解集;2.解一元一次不等式組.6、A【解析】試題分析:第一個的進價為:80÷(1+60%)=50元,第二個的進價為:80÷(1-20%)=100元,則80×2-(50+100)=10元,即盈利10元.考點:一元一次方程的應用7、C【解析】試題解析:10戶居民2015年4月份用電量為30,42,42,50,50,50,51,51,51,51,平均數為(30+42+42+50+50+50+51+51+51+51)=46.8,中位數為50;眾數為51,極差為51-30=21,方差為[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.故選C.考點:1.方差;2.中位數;3.眾數;4.極差.8、D【解析】
直接利用提取公因式法以及公式法分解因式,進而判斷即可.【詳解】解:A、,無法直接分解因式,故此選項錯誤;B、,無法直接分解因式,故此選項錯誤;C、,無法直接分解因式,故此選項錯誤;D、,正確.故選:D.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.9、B【解析】
由菱形的性質得出AD=AB=6,∠ADC=120°,由三角函數求出菱形的高DF,圖中陰影部分的面積=菱形ABCD的面積-扇形DEFG的面積,根據面積公式計算即可.【詳解】∵四邊形ABCD是菱形,∠DAB=60°,
∴AD=AB=6,∠ADC=180°-60°=120°,
∵DF是菱形的高,
∴DF⊥AB,
∴DF=AD?sin60°=6×=3,
∴陰影部分的面積=菱形ABCD的面積-扇形DEFG的面積=6×3=18-9π.
故選B.【點睛】本題考查了菱形的性質、三角函數、菱形和扇形面積的計算;由三角函數求出菱形的高是解決問題的關鍵.10、D【解析】分析:詳解:如圖,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故選:D.點睛:本題主要考查全等三角形的判定與性質,證明△ABF≌△CDE是關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】
根據(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.【詳解】∵a1-b1=8,
∴(a+b)(a-b)=8,
∵a+b=4,
∴a-b=1,
故答案是:1.【點睛】考查了平方差,關鍵是掌握(a+b)(a-b)=a1-b1.12、4【解析】
首先根據矩形的性質以及垂線的性質得到∠FDC=∠ABE,進而得出tan∠FDC=tan∠AEB=ABBE【詳解】∵DF⊥AE,垂足為F,∴∠AFD=90°,∵∠ADF+∠DAF=90°,∠ADF+∠CDF=90°,∴∠DAF=∠CDF,∵∠DAF=∠AEB,∴∠FDC=∠ABE,∴tan∠FDC=tan∠AEB=ABBE,∵在矩形ABCD中,AB=4,E是BC上的一點,BE=3,∴tan∠FDC=43.故答案為【點睛】本題主要考查了銳角三角函數的關系以及矩形的性質,根據已知得出tan∠FDC=tan∠AEB是解題關鍵.13、1【解析】
先根據矩形的性質,推理得到OF=CF,再根據Rt△BOF求得OF的長,即可得到CF的長.【詳解】解:∵EF⊥BD,∠AEO=120°,
∴∠EDO=30°,∠DEO=60°,
∵四邊形ABCD是矩形,
∴∠OBF=∠OCF=30°,∠BFO=60°,
∴∠FOC=60°-30°=30°,
∴OF=CF,
又∵Rt△BOF中,BO=BD=AC=,
∴OF=tan30°×BO=1,
∴CF=1,
故答案為:1.【點睛】本題考查矩形的性質以及解直角三角形的運用,解題關鍵是掌握:矩形的對角線相等且互相平分.14、22【解析】
根據數量關系分別求出y1,y2,y3,y4,…,不難發現,每3次計算為一個循環組依次循環,用2006除以3,根據商和余數的情況確定y2006的值即可.【詳解】y1=,
y2=?=2,
y3=?=,
y4=?=,
…,
∴每3次計算為一個循環組依次循環,
∵2006÷3=668余2,
∴y2006為第669循環組的第2次計算,與y2的值相同,
∴y2006=2,
故答案為;2;;2.【點睛】本題考查反比例函數的定義,解題的關鍵是多運算找規律.15、2,【解析】試題分析:根據相反數和倒數的定義分別進行求解,﹣2的相反數是2,﹣2的倒數是.考點:倒數;相反數.16、1【解析】
根據題意可以設出點A的坐標,從而以得到點C和點B的坐標,再根據的面積為1,即可求得k的值.【詳解】解:設點A的坐標為,過點C的直線與x軸,y軸分別交于點A,B,且,的面積為1,點,點B的坐標為,,解得,,故答案為:1.【點睛】本題考查了反比例函數系數k的幾何意義、一次函數圖象上點的坐標特征、反比例函數圖象上點的坐標特征,解題關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.17、18π【解析】解:設圓錐的半徑為,母線長為.則解得三、解答題(共7小題,滿分69分)18、3.05米.【解析】
延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到結論.【詳解】延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,∴sin60°=,∴FG=2.165,∴DM=FG+GM﹣DF≈3.05米.答:籃框D到地面的距離是3.05米.考點:解直角三角形的應用.19、(1)(20+2x),(40﹣x);(2)每件童裝降價20元或10元,平均每天贏利1200元;(3)不可能做到平均每天盈利2000元.【解析】
(1)、根據銷售量=原銷售量+因價格下降而增加的數量;每件利潤=原售價-進價-降價,列式即可;(2)、根據總利潤=單件利潤×數量,列出方程即可;(3)、根據(2)中的相關關系方程,判斷方程是否有實數根即可.【詳解】(1)、設每件童裝降價x元時,每天可銷售20+2x件,每件盈利40-x元,
故答案為(20+2x),(40-x);(2)、根據題意可得:(20+2x)(40-x)=1200,解得:即每件童裝降價10元或20元時,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000,,∵此方程無解,∴不可能盈利2000元.【點睛】本題主要考查的是一元二次方程的實際應用問題,屬于中等難度題型.解決這個問題的關鍵就是要根據題意列出方程.20、見解析.【解析】
由“SAS”可證△ABC≌△DEC,可得BC=CE,即可得結論.【詳解】證明:∵AB=DE,∠A=∠D,∠ACB=∠DCE=90°∴△ABC≌△DEC(SAS)∴BC=CE,∵AC=AE+CE∴AC=AE+BC【點睛】本題考查了全等三角形的判定和性質,熟練運用全等三角形的性質是本題的關鍵.21、(3)證明見解析;(3)AB=3.【解析】
(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根據SAS推出△ACE≌△BCD即可;(3)求出AD=5,根據全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【詳解】證明:(3)如圖,∵△ACB與△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,則∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD==5,∴AB=AD+BD=33+5=3.【點睛】本題考查了全等三角形的判定與性質,也考查了等腰直角三角形的性質和勾股定理的應用.考點:3.全等三角形的判定與性質;3.等腰直角三角形.22、(1)見解析;(2)140人;(1).【解析】
(1)分別利用條形統計圖和扇形統計圖得出總人數,進而得出錯誤的哪組;(2)求出1分以下所占的百分比即可估計成績未達到合格的有多少名學生;(1)根據題意可以畫出相應的樹狀圖,從而可以求得張明、李剛兩名同恰好分在同一組的概率.【詳解】(1)由統計圖可得:(1分)(2分)(4分)(5分)甲(人)01764乙(人)22584全體(%)512.5101517.5乙組得分的人數統計有誤,理由:由條形統計圖和扇形統計圖的對應可得,2÷5%=40,(1+2)÷12.5%=40,(7+5)÷10
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 模塊化玻璃幕墻安裝與售后維護服務協議
- 采礦權抵押擔保資產證券化合同模板
- 通信設施場地調研與網絡建設合同協議
- 車輛買賣及維修保養責任明確協議
- 異物護理技術操作規范
- 餐飲店員工培訓與職業發展規劃合同
- 環保產業園區成品油供應與綠色發展合同
- 跨境電商平臺財務顧問聘用合同樣本
- 心理治療主要流派解析
- 神經細胞圖例分析解讀
- 航空公司客戶價值分析數據挖掘設計
- 華為項目管理金種子中級培訓教材
- 瀝青混凝土路面安全技術交底
- 振動力學期末試卷-06.07.08期末-上海交大
- 醫療器械監督管理條例培訓試題
- 小升初數學知識點總結(小考復習精編專項講義)六年級數學小升初復習系列:數與式知識點梳理大全
- 中國抗血栓藥物相關出血診療規范專家共識(2022年版)解讀
- 垃圾電站焚燒爐安裝施工方案
- 伊東豐雄作品分析
- 自動售貨機設備采購投標方案(技術方案)
- 設備-臺賬及點檢保養
評論
0/150
提交評論