




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025年安徽省黃山市高三階段性測試(五)數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點,若點在曲線上運動,則面積的最小值為()A.6 B.3 C. D.2.已知函數則函數的圖象的對稱軸方程為()A. B.C. D.3.設正項等比數列的前n項和為,若,,則公比()A. B.4 C. D.24.函數的大致圖象為()A. B.C. D.5.已知集合,則的值域為()A. B. C. D.6.已知函數,則不等式的解集是()A. B. C. D.7.已知函數,存在實數,使得,則的最大值為()A. B. C. D.8.已知,,,若,則()A. B. C. D.9.若函數的圖象如圖所示,則的解析式可能是()A. B. C. D.10.設復數滿足,則()A.1 B.-1 C. D.11.已知復數z滿足,則在復平面上對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知函數的圖象在處的切線斜率為,則______.14.函數的圖象向右平移個單位后,與函數的圖象重合,則_____.15.已知數列的前項和公式為,則數列的通項公式為___.16.已知盒中有2個紅球,2個黃球,且每種顏色的兩個球均按,編號,現從中摸出2個球(除顏色與編號外球沒有區別),則恰好同時包含字母,的概率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,分別為內角,,的對邊,若同時滿足下列四個條件中的三個:①;②;③;④.(1)滿足有解三角形的序號組合有哪些?(2)在(1)所有組合中任選一組,并求對應的面積.(若所選條件出現多種可能,則按計算的第一種可能計分)18.(12分)已知數列的前項和為,且滿足().(1)求數列的通項公式;(2)設(),數列的前項和.若對恒成立,求實數,的值.19.(12分)某生物硏究小組準備探究某地區蜻蜓的翼長分布規律,據統計該地區蜻蜓有兩種,且這兩種的個體數量大致相等,記種蜻蜓和種蜻蜓的翼長(單位:)分別為隨機變量,其中服從正態分布,服從正態分布.(Ⅰ)從該地區的蜻蜓中隨機捕捉一只,求這只蜻蜓的翼長在區間的概率;(Ⅱ)記該地區蜻蜓的翼長為隨機變量,若用正態分布來近似描述的分布,請你根據(Ⅰ)中的結果,求參數和的值(精確到0.1);(Ⅲ)在(Ⅱ)的條件下,從該地區的蜻蜓中隨機捕捉3只,記這3只中翼長在區間的個數為,求的分布列及數學期望(分布列寫出計算表達式即可).注:若,則,,.20.(12分)已知定點,,直線、相交于點,且它們的斜率之積為,記動點的軌跡為曲線。(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,是否存在定點,使得直線與斜率之積為定值,若存在,求出坐標;若不存在,請說明理由。21.(12分)已知某種細菌的適宜生長溫度為12℃~27℃,為了研究該種細菌的繁殖數量(單位:個)隨溫度(單位:℃)變化的規律,收集數據如下:溫度/℃14161820222426繁殖數量/個2530385066120218對數據進行初步處理后,得到了一些統計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關于的散點圖,并根據散點圖判斷與哪一個更適合作為該種細菌的繁殖數量關于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(1)的判斷結果及表格數據,建立關于的回歸方程(結果精確到0.1);(3)當溫度為27℃時,該種細菌的繁殖數量的預報值為多少?參考公式:對于一組數據,其回歸直線的斜率和截距的最小二成估計分別為,,參考數據:.22.(10分)如圖,在四棱錐中,底面是邊長為2的菱形,,平面平面,點為棱的中點.(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;(Ⅱ)當二面角的余弦值為時,求直線與平面所成的角.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
求得直線的方程,畫出曲線表示的下半圓,結合圖象可得位于,結合點到直線的距離公式和兩點的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點為圓心,1為半徑的下半圓(包括兩個端點),如圖,直線的方程為,可得,由圓與直線的位置關系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.本題考查三角形面積最值,解題關鍵是掌握直線與圓的位置關系,確定半圓上的點到直線距離的最小值,這由數形結合思想易得.2.C【解析】
,將看成一個整體,結合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.本題考查余弦型函數的對稱性的問題,在處理余弦型函數的性質時,一般采用整體法,結合三角函數的性質,是一道容易題.3.D【解析】
由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數列得,∴,故選:D.本題主要考查等比數列的性質的應用,屬于基礎題.4.A【解析】
利用特殊點的坐標代入,排除掉C,D;再由判斷A選項正確.【詳解】,排除掉C,D;,,,.故選:A.本題考查了由函數解析式判斷函數的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.5.A【解析】
先求出集合,化簡=,令,得由二次函數的性質即可得值域.【詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域為故選A本題考查了二次不等式的解法、二次函數最值的求法,換元法要注意新變量的范圍,屬于中檔題6.B【解析】
由導數確定函數的單調性,利用函數單調性解不等式即可.【詳解】函數,可得,時,,單調遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.本題主要考查了利用導數判定函數的單調性,根據單調性解不等式,屬于中檔題.7.A【解析】
畫出分段函數圖像,可得,由于,構造函數,利用導數研究單調性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A本題考查了導數在函數性質探究中的應用,考查了學生數形結合,轉化劃歸,綜合分析,數學運算的能力,屬于較難題.8.B【解析】
由平行求出參數,再由數量積的坐標運算計算.【詳解】由,得,則,,,所以.故選:B.本題考查向量平行的坐標表示,考查數量積的坐標運算,掌握向量數量積的坐標運算是解題關鍵.9.A【解析】
由函數性質,結合特殊值驗證,通過排除法求得結果.【詳解】對于選項B,為奇函數可判斷B錯誤;對于選項C,當時,,可判斷C錯誤;對于選項D,,可知函數在第一象限的圖象無增區間,故D錯誤;故選:A.本題考查已知函數的圖象判斷解析式問題,通過函數性質及特殊值利用排除法是解決本題的關鍵,難度一般.10.B【解析】
利用復數的四則運算即可求解.【詳解】由.故選:B本題考查了復數的四則運算,需掌握復數的運算法則,屬于基礎題.11.A【解析】
設,由得:,由復數相等可得的值,進而求出,即可得解.【詳解】設,由得:,即,由復數相等可得:,解之得:,則,所以,在復平面對應的點的坐標為,在第一象限.故選:A.本題考查共軛復數的求法,考查對復數相等的理解,考查復數在復平面對應的點,考查運算能力,屬于??碱}.12.B【解析】
先求出滿足的值,然后根據充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.本題考查充分必要條件,掌握充分必要條件的定義是解題基礎.解題時可根據條件與結論中參數的取值范圍進行判斷.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先對函數f(x)求導,再根據圖象在(0,f(0))處切線的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數得,∵函數f(x)的圖象在(0,f(0))處切線的斜率為﹣4,,.故答案為4本題考查了根據曲線上在某點切線方程的斜率求參數的問題,屬于基礎題.14.【解析】
根據函數圖象的平移變換公式求得變換后的函數解析式,再利用誘導公式求得滿足的方程,結合題中的范圍即可求解.【詳解】由函數圖象的平移變換公式可得,函數的圖象向右平移個單位后,得到的函數解析式為,因為函數,所以函數與函數的圖象重合,所以,即,因為,所以.故答案為:本題考查函數圖象的平移變換和三角函數的誘導公式;誘導公式的靈活運用是求解本題的關鍵;屬于中檔題.15.【解析】
由題意,根據數列的通項與前n項和之間的關系,即可求得數列的通項公式.【詳解】由題意,可知當時,;當時,.又因為不滿足,所以.本題主要考查了利用數列的通項與前n項和之間的關系求解數列的通項公式,其中解答中熟記數列的通項與前n項和之間的關系,合理準確推導是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.16.【解析】
根據組合數得出所有情況數及兩個球顏色不相同的情況數,讓兩個球顏色不相同的情況數除以總情況數即為所求的概率.【詳解】從袋中任意地同時摸出兩個球共種情況,其中有種情況是兩個球顏色不相同;故其概率是故答案為:.本題主要考查了求事件概率,解題關鍵是掌握概率的基礎知識和組合數計算公式,考查了分析能力和計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)①,③,④或②,③,④;(2).【解析】
(1)由①可求得的值,由②可求出角的值,結合題意得出,推出矛盾,可得出①②不能同時成為的條件,由此可得出結論;(2)在符合條件的兩組三角形中利用余弦定理和正弦定理求出對應的邊和角,然后利用三角形的面積公式可求出的面積.【詳解】(1)由①得,,所以,由②得,,解得或(舍),所以,因為,且,所以,所以,矛盾.所以不能同時滿足①,②.故滿足①,③,④或②,③,④;(2)若滿足①,③,④,因為,所以,即.解得.所以的面積.若滿足②,③,④由正弦定理,即,解得,所以,所以的面積.本題考查三角形能否成立的判斷,同時也考查了利用正弦定理和余弦定理解三角形,以及三角形面積的計算,要結合三角形已知元素類型合理選擇正弦定理或余弦定理解三角形,考查運算求解能力,屬于中等題.18.(1)(2),.【解析】
(1)根據數列的通項與前n項和的關系式,即求解數列的通項公式;(2)由(1)可得,利用等比數列的前n項和公式和裂項法,求得,結合題意,即可求解.【詳解】(1)由題意,當時,由,解得;當時,可得,即,顯然當時上式也適合,所以數列的通項公式為.(2)由(1)可得,所以.因為對恒成立,所以,.本題主要考查了數列的通項公式的求解,等差數列的前n項和公式,以及裂項法求和的應用,其中解答中熟記等差、等比數列的通項公式和前n項和公式,以及合理利用“裂項法”求和是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.19.(Ⅰ);(Ⅱ),;(Ⅲ)詳見解析.【解析】
(Ⅰ)由題知這只蜻蜓是種還是種的可能性是相等的,所以,代入數值運算即可;(Ⅱ)可判斷均值應為,再結合(1)和題干備注信息可得,進而求解;(Ⅲ)求得,該分布符合二項分布,故,列出分布列,計算出對應概率,結合即可求解;【詳解】(Ⅰ)記這只蜻蜓的翼長為.因為種蜻蜓和種蜻蜓的個體數量大致相等,所以這只蜻蜓是種還是種的可能性是相等的.所以.(Ⅱ)由于兩種蜻蜓的個體數量相等,的方差也相等,根據正態曲線的對稱性,可知由(Ⅰ)可知,得.(Ⅲ)設蜻蜓的翼長為,則.由題有,所以.因此的分布列為.本題考查正態分布基本量的求解,二項分布求解離散型隨機變量分布列和期望,屬于中檔題20.(1);(2)存在定點,見解析【解析】
(1)設動點,則,利用,求出曲線的方程.(2)由已知直線過點,設的方程為,則聯立方程組,消去得,設,,,利用韋達定理求解直線的斜率,然后求解指向性方程,推出結果.【詳解】解:(1)設動點,則,,,即,化簡得:。由已知,故曲線的方程為。(2)由已知直線過點,設的方程為,則聯立方程組,消去得,設,,則又直線與斜率分別為,,則。當時,,;當時,,。所以存在定點,使得直線與斜率之積為定值。本題考查軌跡方程的求法,直線與橢圓的位置關系的綜合應用,考查計算能力,屬于中檔題.21.(1)作圖見解析;更適合(2)(3)預報值為245【解析】
(1)由散點圖即可得到答案;(2)把兩邊取自然對數,得,由計算得到,再將代入可得,最終求得,即;(3)將代入中計算即可.【詳解】解:(1)繪出關于的散點圖,如圖所示:由散點圖可知,更適合作為該種細菌的繁殖數量關于的回歸方程類型;(2)把兩邊取自然對數,得,即,由.∴,則關于的回歸方程為;(3)當時,計算可得;即溫度為27℃時,該種細菌的繁殖數量的預報值為245.本題考查求非線性回歸方程及其應用的問題,考查學生數據處理能力及運算能力,是一道中檔題.22.(1)見解析(2)【解析】
(Ⅰ)取的中點,連結、,得到故且,進而得到,利用線面平行的判定定理,即可證得平面.(Ⅱ)以為坐標原點建立如圖空間直角坐標系,設,求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進而得到為直線與平面所成的角,即可求解.【詳解】(Ⅰ)在棱上存在點,使得平面,點為棱的中點.理由如下:取的中點,連結、,由題意,且,且,故且.所以,四邊形為平行四邊形.所以,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遺體火化2025年殘渣檢測分析協議
- 2025年鍍錫板卷(馬口鐵)項目建議書
- 2024年一月車載心理疏導AI對話系統驗收標準
- 2025創建中外合作經營合同(代理公司) 中外合作經營合同有哪些
- 公益活動社團項目實施方案計劃
- 年度工作計劃的循環改進機制
- 有效激勵學生的班級管理技巧計劃
- 財務業務規劃計劃
- 班級親子活動的組織與安排計劃
- 2025年核子及核輻射測量儀器項目建議書
- 2024年中國機械工業集團有限公司國機集團總部招聘筆試真題
- 高新技術企業認定代理服務協議書范本
- 安全生產、文明施工資金保障制度11142
- 中藥性狀鑒定技術知到課后答案智慧樹章節測試答案2025年春天津生物工程職業技術學院
- 專題09 產業區位與產業發展【知識精研】高考地理二輪復習
- 《陸上風電場工程概算定額》NBT 31010-2019
- 2024年山東省事業單位歷年面試題目及答案解析50套
- CT圖像偽影及處理
- 診所備案申請表格(衛健委備案)
- 案例收球器盲板傷人事故
- 《雷鋒叔叔_你在哪里》說課稿
評論
0/150
提交評論