湖南省長沙市開福區周南中學2023-2024學年中考數學四模試卷含解析_第1頁
湖南省長沙市開福區周南中學2023-2024學年中考數學四模試卷含解析_第2頁
湖南省長沙市開福區周南中學2023-2024學年中考數學四模試卷含解析_第3頁
湖南省長沙市開福區周南中學2023-2024學年中考數學四模試卷含解析_第4頁
湖南省長沙市開福區周南中學2023-2024學年中考數學四模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省長沙市開福區周南中學2023-2024學年中考數學四模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列運算正確的是()A.a2?a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=62.如果向北走6km記作+6km,那么向南走8km記作()A.+8kmB.﹣8kmC.+14kmD.﹣2km3.如圖,在6×4的正方形網格中,△ABC的頂點均為格點,則sin∠ACB=()A. B.2 C. D.4.有一圓形苗圃如圖1所示,中間有兩條交叉過道AB,CD,它們為苗圃的直徑,且AB⊥CD.入口K位于中點,園丁在苗圃圓周或兩條交叉過道上勻速行進.設該園丁行進的時間為x,與入口K的距離為y,表示y與x的函數關系的圖象大致如圖2所示,則該園丁行進的路線可能是()A.A→O→D B.C→A→O→B C.D→O→C D.O→D→B→C5.如圖,直線l1、l2、l3表示三條相互交叉的公路,現要建一個貨物中轉站,要求它到三條公路的距離相等,則供選擇的地址有()A.1處 B.2處 C.3處 D.4處6.如圖,若a∥b,∠1=60°,則∠2的度數為()A.40° B.60° C.120° D.150°7.已知拋物線y=x2+(2a+1)x+a2﹣a,則拋物線的頂點不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.我們知道:四邊形具有不穩定性.如圖,在平面直角坐標系中,邊長為4的正方形ABCD的邊AB在x軸上,AB的中點是坐標原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D′處,則點C的對應點C′的坐標為()A.(,2) B.(4,1) C.(4,) D.(4,)9.下列圖形是幾家通訊公司的標志,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.10.下列算式中,結果等于x6的是()A.x2?x2?x2B.x2+x2+x2C.x2?x3D.x4+x211.兩個有理數的和為零,則這兩個數一定是()A.都是零 B.至少有一個是零C.一個是正數,一個是負數 D.互為相反數12.在國家“一帶一路”倡議下,我國與歐洲開通了互利互惠的中歐專列.行程最長,途經城市和國家最多的一趟專列全程長13000km,將13000用科學記數法表示應為()A.0.13×105 B.1.3×104 C.1.3×105 D.13×103二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,△ABC中,AB=6,AC=4,AD、AE分別是其角平分線和中線,過點C作CG⊥AD于F,交AB于G,連接EF,則線段EF的長為_____.14.計算的結果等于_____.15.如圖:圖象①②③均是以P0為圓心,1個單位長度為半徑的扇形,將圖形①②③分別沿東北,正南,西北方向同時平移,每次移動一個單位長度,第一次移動后圖形①②③的圓心依次為P1P2P3,第二次移動后圖形①②③的圓心依次為P4P5P6…,依此規律,P0P2018=_____個單位長度.16.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正確的是_____.17.工人師傅常用角尺平分一個任意角.做法如下:如圖,∠AOB是一個任意角,在邊OA,OB上分別取OM=ON,移動角尺,使角尺兩邊相同的刻度分別與M,N重合.過角尺頂點C的射線OC即是∠AOB的平分線.做法中用到全等三角形判定的依據是______.18.如圖,在平面直角坐標系中,正方形ABOC和正方形DOFE的頂點B,F在x軸上,頂點C,D在y軸上,且S△ADC=4,反比例函數y=(x>0)的圖像經過點E,則k=_______。三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,某市郊外景區內一條筆直的公路a經過三個景點A、B、C,景區管委會又開發了風景優美的景點D,經測量,景點D位于景點A的北偏東30′方向8km處,位于景點B的正北方向,還位于景點C的北偏西75°方向上,已知AB=5km.景區管委會準備由景點D向公路a修建一條距離最短的公路,不考試其他因素,求出這條公路的長.(結果精確到0.1km).求景點C與景點D之間的距離.(結果精確到1km).20.(6分)如圖,∠MON的邊OM上有兩點A、B在∠MON的內部求作一點P,使得點P到∠MON的兩邊的距離相等,且△PAB的周長最小.(保留作圖痕跡,不寫作法)21.(6分)計算:22.(8分)在如圖的正方形網格中,每一個小正方形的邊長為1;格點三角形ABC(頂點是網格線交點的三角形)的頂點A、C的坐標分別是(-4,6)、(-1,4);請在圖中的網格平面內建立平面直角坐標系;請畫出△ABC關于x軸對稱的△A1B1C1;請在y軸上求作一點P,使△PB1C的周長最小,并直接寫出點P的坐標.23.(8分)小王上周五在股市以收盤價(收市時的價格)每股25元買進某公司股票1000股,在接下來的一周交易日內,小王記下該股票每日收盤價格相比前一天的漲跌情況:(單位:元)星期一二三四五每股漲跌(元)+2﹣1.4+0.9﹣1.8+0.5根據上表回答問題:(1)星期二收盤時,該股票每股多少元?(2)周內該股票收盤時的最高價,最低價分別是多少?(3)已知買入股票與賣出股票均需支付成交金額的千分之五的交易費.若小王在本周五以收盤價將全部股票賣出,他的收益情況如何?24.(10分)綿陽某公司銷售統計了每個銷售員在某月的銷售額,繪制了如下折線統計圖和扇形統計圖:

設銷售員的月銷售額為x(單位:萬元)。銷售部規定:當x<16時,為“不稱職”,當時為“基本稱職”,當時為“稱職”,當時為“優秀”.根據以上信息,解答下列問題:補全折線統計圖和扇形統計圖;求所有“稱職”和“優秀”的銷售員銷售額的中位數和眾數;為了調動銷售員的積極性,銷售部決定制定一個月銷售額獎勵標準,凡月銷售額達到或超過這個標準的銷售員將獲得獎勵。如果要使得所有“稱職”和“優秀”的銷售員的一半人員能獲獎,月銷售額獎勵標準應定為多少萬元(結果去整數)?并簡述其理由.25.(10分)如圖,一次函數y=ax﹣1的圖象與反比例函數的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=(1)求a,k的值及點B的坐標;(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;(3)在y軸上存在一點P,使得△PDC與△ODC相似,請你求出P點的坐標.26.(12分)如圖,在平面直角坐標系xOy中,已知正比例函數與一次函數的圖像交于點A,(1)求點A的坐標;(2)設x軸上一點P(a,0),過點P作x軸的垂線(垂線位于點A的右側),分別交和的圖像于點B、C,連接OC,若BC=OA,求△OBC的面積.27.(12分)我校舉行“漢字聽寫”比賽,每位學生聽寫漢字39個,比賽結束后隨機抽查部分學生的聽寫結果,以下是根據抽查結果繪制的統計圖的一部分.組別正確數字x人數A0≤x<810B8≤x<1615C16≤x<2425D24≤x<32mE32≤x<40n根據以上信息解決下列問題:(1)在統計表中,m=,n=,并補全條形統計圖.(2)扇形統計圖中“C組”所對應的圓心角的度數是.(3)有三位評委老師,每位老師在E組學生完成學校比賽后,出示“通過”或“淘汰”或“待定”的評定結果.學校規定:每位學生至少獲得兩位評委老師的“通過”才能代表學校參加鄂州市“漢字聽寫”比賽,請用樹形圖求出E組學生王云參加鄂州市“漢字聽寫”比賽的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

運用正確的運算法則即可得出答案.【詳解】A、應該為a5,錯誤;B、為2,錯誤;C、為4,錯誤;D、正確,所以答案選擇D項.【點睛】本題考查了四則運算法則,熟悉掌握是解決本題的關鍵.2、B【解析】

正負數的應用,先判斷向北、向南是不是具有相反意義的量,再用正負數表示出來【詳解】解:向北和向南互為相反意義的量.若向北走6km記作+6km,那么向南走8km記作﹣8km.故選:B.【點睛】本題考查正負數在生活中的應用.注意用正負數表示的量必須是具有相反意義的量.3、C【解析】

如圖,由圖可知BD=2、CD=1、BC=,根據sin∠BCA=可得答案.【詳解】解:如圖所示,∵BD=2、CD=1,∴BC===,則sin∠BCA===,故選C.【點睛】本題主要考查解直角三角形,解題的關鍵是熟練掌握正弦函數的定義和勾股定理.4、B【解析】【分析】觀察圖象可知園丁與入口K的距離先減小,然后再增大,但是沒有到過入口的位置,據此逐項進行分析即可得.【詳解】A.A→O→D,園丁與入口的距離逐漸增大,逐漸減小,不符合;B.C→A→O→B,園丁與入口的距離逐漸減小,然后又逐漸增大,符合;C.D→O→C,園丁與入口的距離逐漸增大,不符合;D.O→D→B→C,園丁與入口的距離先逐漸變小,然后再逐漸變大,再逐漸變小,不符合,故選B.【點睛】本題考查了動點問題的函數圖象,看懂圖形,認真分析是解題的關鍵.5、D【解析】

到三條相互交叉的公路距離相等的地點應是三條角平分線的交點.把三條公路的中心部位看作三角形,那么這個三角形兩個內角平分線的交點以及三個外角兩兩平分線的交點都滿足要求.【詳解】滿足條件的有:(1)三角形兩個內角平分線的交點,共一處;(2)三個外角兩兩平分線的交點,共三處.如圖所示,故選D.【點睛】本題考查了角平分線的性質;這是一道生活聯系實際的問題,解答此類題目時最直接的判斷就是三角形的角平分線,很容易漏掉外角平分線,解答時一定要注意,不要漏解.6、C【解析】如圖:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故選C.點睛:本題考查了平行線的性質,對頂角相等的性質,熟記性質是解題的關鍵.平行線的性質定理:兩直線平行,同位角相等,內錯角相等,同旁內角互補,兩條平行線之間的距離處處相等.7、D【解析】

求得頂點坐標,得出頂點的橫坐標和縱坐標的關系式,即可求得.【詳解】拋物線y=x2+(2a+1)x+a2﹣a的頂點的橫坐標為:x=﹣=﹣a﹣,縱坐標為:y==﹣2a﹣,∴拋物線的頂點橫坐標和縱坐標的關系式為:y=2x+,∴拋物線的頂點經過一二三象限,不經過第四象限,故選:D.【點睛】本題考查了二次函數的性質,得到頂點的橫縱坐標的關系式是解題的關鍵.8、D【解析】

由已知條件得到AD′=AD=4,AO=AB=2,根據勾股定理得到OD′==2,于是得到結論.【詳解】解:∵AD′=AD=4,

AO=AB=1,

∴OD′==2,

∵C′D′=4,C′D′∥AB,

∴C′(4,2),故選:D.【點睛】本題考查正方形的性質,坐標與圖形的性質,勾股定理,正確的識別圖形是解題關鍵.9、C【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;B.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;C.是軸對稱圖形,也是中心對稱圖形.故正確;D.不是軸對稱圖形,是中心對稱圖形.故錯誤.故選C.【點睛】掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180°后與原圖重合.10、A【解析】試題解析:A、x2?x2?x2=x6,故選項A符合題意;

B、x2+x2+x2=3x2,故選項B不符合題意;

C、x2?x3=x5,故選項C不符合題意;

D、x4+x2,無法計算,故選項D不符合題意.

故選A.11、D【解析】解:互為相反數的兩個有理數的和為零,故選D.A、C不全面.B、不正確.12、B【解析】試題分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.將13000用科學記數法表示為:1.3×1.故選B.考點:科學記數法—表示較大的數二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】在△AGF和△ACF中,,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,則BG=AB?AG=6?4=2.又∵BE=CE,∴EF是△BCG的中位線,∴EF=BG=1.故答案是:1.14、【解析】分析:直接利用二次根式的性質進行化簡即可.詳解:==.故答案為.點睛:本題主要考查了分母有理化,正確掌握二次根式的性質是解題的關鍵.15、1【解析】

根據P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移動一次,圓心離中心的距離增加1個單位,依據2018=3×672+2,即可得到點P2018在正南方向上,P0P2018=672+1=1.【詳解】由圖可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;∵2018=3×672+2,∴點P2018在正南方向上,∴P0P2018=672+1=1,故答案為1.【點睛】本題主要考查了坐標與圖形變化,應找出圖形哪些部分發生了變化,是按照什么規律變化的,通過分析找到各部分的變化規律后直接利用規律求解.探尋規律要認真觀察、仔細思考,善用聯想來解決這類問題.16、①②④【解析】①由a=b,得5﹣2a=5﹣2b,根據等式的性質先將式子兩邊同時乘以-2,再將等式兩邊同時加上5,等式仍成立,所以本選項正確,②由a=b,得ac=bc,根據等式的性質,等式兩邊同時乘以相同的式子,等式仍成立,所以本選項正確,③由a=b,得,根據等式的性質,等式兩邊同時除以一個不為0的數或式子,等式仍成立,因為可能為0,所以本選項不正確,④由,得3a=2b,根據等式的性質,等式兩邊同時乘以相同的式子6c,等式仍成立,所以本選項正確,⑤因為互為相反數的平方也相等,由a2=b2,得a=b,或a=-b,所以本選項錯誤,故答案為:①②④.17、SSS.【解析】

由三邊相等得△COM≌△CON,即由SSS判定三角全等.做題時要根據已知條件結合判定方法逐個驗證.【詳解】由圖可知,CM=CN,又OM=ON,∵在△MCO和△NCO中,∴△COM≌△CON(SSS),∴∠AOC=∠BOC,即OC是∠AOB的平分線.故答案為:SSS.【點睛】本題考查了全等三角形的判定及性質.要熟練掌握確定三角形的判定方法,利用數學知識解決實際問題是一種重要的能力,要注意培養.18、8【解析】

設正方形ABOC和正方形DOFE的邊長分別是m、n,則AB=OB=m,DE=EF=OF=n,BF=OB+OF=m+n,然后根據S△ADF=S梯形ABOD+S△DOF-S△ABF=4,得到關于n的方程,解方程求得n的值,最后根據系數k的幾何意義求得即可.【詳解】設正方形ABOC和正方形DOFE的邊長分別是m、n,則AB=OB=m,DE=EF=OF=n,∴BF=OB+OF=m+n,,∴=8,∵點E(n.n)在反比例函數y=kx(x>0)的圖象上,∴k==8,故答案為8.【點睛】本題考查了正方形的性質和反比例函數圖象上點的坐標特征.圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)景點D向公路a修建的這條公路的長約是3.1km;(2)景點C與景點D之間的距離約為4km.【解析】

解:(1)如圖,過點D作DE⊥AC于點E,過點A作AF⊥DB,交DB的延長線于點F,在Rt△DAF中,∠ADF=30°,∴AF=AD=×8=4,∴DF=,在Rt△ABF中BF==3,∴BD=DF﹣BF=4﹣3,sin∠ABF=,在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,∴DE=BD?sin∠DBE=×(4﹣3)=≈3.1(km),∴景點D向公路a修建的這條公路的長約是3.1km;(2)由題意可知∠CDB=75°,由(1)可知sin∠DBE==0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),∴景點C與景點D之間的距離約為4km.20、詳見解析【解析】

作∠MON的角平分線OT,在ON上截取OA′,使得OA′=OA,連接BA′交OT于點P,點P即為所求.【詳解】解:如圖,點P即為所求.【點睛】本題主要考查作圖-復雜作圖,利用了角平分線的性質,難點在于利用軸對稱求最短路線的問題.21、5【解析】

本題涉及零指數冪、負整數指數冪、絕對值、乘方四個考點.在計算時,需要針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果.【詳解】原式=4-8×0.125+1+1=4-1+2=5【點睛】本題考查實數的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟練掌握負整數指數冪、零指數冪、乘方、絕對值等考點的運算.22、(1)(2)見解析;(3)P(0,2).【解析】分析:(1)根據A,C兩點的坐標即可建立平面直角坐標系.(2)分別作各點關于x軸的對稱點,依次連接即可.(3)作點C關于y軸的對稱點C′,連接B1C′交y軸于點P,即為所求.詳解:(1)(2)如圖所示:(3)作點C關于y軸的對稱點C′,連接B1C′交y軸于點P,則點P即為所求.設直線B1C′的解析式為y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴,解得:,∴直線AB2的解析式為:y=2x+2,∴當x=0時,y=2,∴P(0,2).點睛:本題主要考查軸對稱圖形的繪制和軸對稱的應用.23、(1)25.6元;(2)收盤最高價為27元/股,收盤最低價為24.7元/股;(3)-51元,虧損51元.【解析】試題分析:(1)根據有理數的加減法的運算方法,求出星期二收盤時,該股票每股多少元即可.(2)這一周內該股票星期一的收盤價最高,星期四的收盤價最低.(3)用本周五以收盤價將全部股票賣出后得到的錢數減去買入股票與賣出股票均需支付的交易費,判斷出他的收益情況如何即可.試題解析:(1)星期二收盤價為25+2?1.4=25.6(元/股)答:該股票每股25.6元.(2)收盤最高價為25+2=27(元/股)收盤最低價為25+2?1.45+0.9?1.8=24.7(元/股)答:收盤最高價為27元/股,收盤最低價為24.7元/股.(3)(25.2-25)×1000-5‰×1000×(25.2+25)=200-251=-51(元)答:小王的本次收益為-51元.24、(1)補全統計圖如圖見解析;(2)“稱職”的銷售員月銷售額的中位數為:22萬,眾數:21萬;“優秀”的銷售員月銷售額的中位數為:26萬,眾數:25萬和26萬;(3)月銷售額獎勵標準應定為22萬元.【解析】

(1)根據稱職的人數及其所占百分比求得總人數,據此求得不稱職、基本稱職和優秀的百分比,再求出優秀的總人數,從而得出銷售26萬元的人數,據此即可補全圖形.(2)根據中位數和眾數的定義求解可得;(3)根據中位數的意義求得稱職和優秀的中位數即可得出符合要求的數據.【詳解】(1)依題可得:

“不稱職”人數為:2+2=4(人),

“基本稱職”人數為:2+3+3+2=10(人),

“稱職”人數為:4+5+4+3+4=20(人),

∴總人數為:20÷50%=40(人),

∴不稱職”百分比:a=4÷40=10%,

“基本稱職”百分比:b=10÷40=25%,

“優秀”百分比:d=1-10%-25%-50%=15%,

∴“優秀”人數為:40×15%=6(人),

∴得26分的人數為:6-2-1-1=2(人),

補全統計圖如圖所示:

(2)由折線統計圖可知:“稱職”20萬4人,21萬5人,22萬4人,23萬3人,24萬4人,

“優秀”25萬2人,26萬2人,27萬1人,28萬1人;

“稱職”的銷售員月銷售額的中位數為:22萬,眾數:21萬;

“優秀”的銷售員月銷售額的中位數為:26萬,眾數:25萬和26萬;

(3)由(2)知月銷售額獎勵標準應定為22萬.

∵“稱職”和“優秀”的銷售員月銷售額的中位數為:22萬,

∴要使得所有“稱職”和“優秀”的銷售員的一半人員能獲獎,月銷售額獎勵標準應定為22萬元.【點睛】考查頻數分布直方圖、扇形統計圖、中位數、眾數等知識,解題的關鍵是靈活運用所學知識解決問題.25、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】

1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,根據tan∠AOC的值,設AE=x,得到OE=3x,再由OA的長,利用勾股定理列出關于x的方程,求出方程的解得到x的值,確定出A坐標,將A坐標代入一次函數解析式求出a的值,代入反比例解析式求出k的值,聯立一次函數與反比例函數解析式求出B的坐標;(2)由A與B交點橫坐標,根據函數圖象確定出所求不等式的解集即可;(3)顯然P與O重合時,滿足△PDC與△ODC相似;當PC⊥CD,即∠PCD=時,滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對角相等,再由一對直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據OD,OC的長求出OP的長,即可確定出P的坐標.【詳解】解:(1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,OA=,tan∠AOC=,設AE=x,則OE=3x,根據勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標代入一次函數y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標代入反比例解析式得:1=,即k=3,聯立一次函數與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據圖象得:不等式x﹣1≥的解集為﹣≤x<0或x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論