華師福建 九年級 下冊 數學 第26章 二次函數《 全章整合與提升》習題課 課件_第1頁
華師福建 九年級 下冊 數學 第26章 二次函數《 全章整合與提升》習題課 課件_第2頁
華師福建 九年級 下冊 數學 第26章 二次函數《 全章整合與提升》習題課 課件_第3頁
華師福建 九年級 下冊 數學 第26章 二次函數《 全章整合與提升》習題課 課件_第4頁
華師福建 九年級 下冊 數學 第26章 二次函數《 全章整合與提升》習題課 課件_第5頁
已閱讀5頁,還剩22頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第26章二次函數全章整合與提升二次函數的定義1.對于任意實數m,下列函數一定是二次函數的是(

)A.y=mx2+3x-1B.y=(m-1)x2C.y=(m-1)2x2

D.y=(-m2-1)x2D234567891011121314151617118192021222.[2024·福州第一中學期末]y=(2-a)xa2-2是二次函數,則a=________.-223456789101112131415161711819202122二次函數的圖象與性質3.將拋物線y=x2向上平移3個單位,再向右平移5個單位,所得到的拋物線的表達式為(

)A.y=(x+3)2+5B.y=(x-3)2+5C.y=(x+5)2+3D.y=(x-5)2+3D234567891011121314151617118192021224.已知二次函數y=-x2-2x+3,下列說法正確的是(

)A.圖象的開口向上B.圖象的對稱軸為直線x=1C.函數有最小值D.當x>-1時,函數值y隨自變量x的增大而減小D234567891011121314151617118192021225.已知點(x1,y1),(x2,y2),(x3,y3)都在二次函數y=ax2-2ax-3a(a<0)的圖象上,若-1<x1<0,1<x2<2,x3>3,則y1,y2,y3之間的大小關系是(

)A.y1>y2>y3

B.y2>y1>y3C.y3>y1>y2

D.y2>y3>y1B234567891011121314151617118192021226.已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,現給出下列結論:①abc>0;②9a+3b+c=0;③b2-4ac<8a;④5a+b+c>0.其中正確結論的個數是(

)A.1B.2C.3

D.4C234567891011121314151617118192021227.已知二次函數y=(x+m-2)(x-m)+2,點A(x1,y1),B(x2,y2)(x1<x2)是其圖象上的兩點,則下列說法正確的是

(

)A.若x1+x2>2,則y1>y2B.若x1+x2<2,則y1>y2C.若x1+x2>-2,則y1>y2D.若x1+x2<-2,則y1<y2B23456789101112131415161711819202122求二次函數的表達式8.二次函數的圖象如圖所示,對稱軸為直線x=-1,根據圖中信息可求得該二次函數的表達式為________________.y=-x2-2x+3234567891011121314151617118192021229.根據條件求下列拋物線的表達式:(1)拋物線經過點(0,1),(2,1)和(3,4);(2)拋物線的頂點坐標是(-2,1),且經過點(1,-2).解:(1)設拋物線的表達式為y=ax2+bx+c,將點(0,1),(2,1)和(3,4)的坐標代入,

解得所以y=x2-2x+1.設拋物線的表達式為y=a(x+2)2+1,把(1,-2)代入,得a×(1+2)2+1=-2,所以a=-

,所以y=-

(x+2)2+1.2345678910111213141516171181920212210.已知二次函數y=x2-2x+3,當-1≤x≤2時,函數的最大值為________.6二次函數的最值【點撥】因為二次函數y=x2-2x+3=(x-1)2+2,所以該拋物線的對稱軸為直線x=1,且a=1>0,所以當x=-1時,二次函數有最大值為6.2345678910111213141516171181920212211.已知二次函數y=x2+bx+c(b、c為常數)的圖象經過點(0,3),(1,-2).(1)求b,c的值;解:(1)因為二次函數y=x2+bx+c(b,c為常數)的圖象經過點(0,3),(1,-2),2345678910111213141516171181920212211.已知二次函數y=x2+bx+c(b、c為常數)的圖象經過點(0,3),(1,-2).(2)當3≤x≤m時,若y的最大值與最小值之和為1,求m的值.由(1)得y=x2-6x+3=(x-3)2-6.所以易得當3≤x≤m時,y的最小值是-6,最大值是(m-3)2-6.所以(m-3)2-6-6=1,解得m1=3+

,m2=3-

(舍去).所以m的值為3+

.2345678910111213141516171181920212212.下表是二次函數y=ax2+bx+c的自變量x與函數值y的部分對應值:那么方程ax2+bx+c=0的一個近似根可能是(

)A.1.2B.2.4C.3.4D.4.5C二次函數與方程、不等式的關系x1234y-4-3-122345678910111213141516171181920212213.拋物線y=kx2-7x-7與x軸有交點,則k的取值范圍是

(

)A.k>-

B.k≥-

且k≠0C.k≥-

D.k>-

且k≠0B2345678910111213141516171181920212214.如圖,拋物線y=ax2+bx+c的對稱軸為直線x=1,P是拋物線與x軸的一個交點,若點P的坐標為(4,0),則關于x的一元二次方程ax2+bx+c=0的解為________________.x1=4,x2=-22345678910111213141516171181920212215.如圖,已知拋物線y=ax2+bx+c與直線y=kx+m交于A(-4,-1)、B(0,2)兩點,則關于x的不等式ax2+bx+c>kx+m的解集是__________.-4<x<02345678910111213141516171181920212216.[2024·廈門二檢]某小組同學為了研究太陽照射下物體影長的變化規律,某日在學校操場上豎立一根直桿,經研究發現,當日該直桿的影長與時間的關系近似于二次函數,并在12:20,13:00,14:10這三個時刻,測得該直桿的影長分別約為0.49m,0.35m,0.44m.根據該小組研究結果,下列關于當日該直桿影長的判斷正確的是(

)A.12:20前,直桿的影子逐漸變長B.13:00后,直桿的影子逐漸變長C.在13:00到14:10之間,還有某個時刻直桿的影長也為0.35mD.在12:20到13:00之間,會有某個時刻直桿的影長達到當日最短二次函數的應用C2345678910111213141516171181920212217.[跨學科·物理]某物理興趣小組對一款飲水機的工作電路展開研究,將變阻器R的滑片從一端滑到另一端,繪制出變阻器R消耗的電功率P隨電流I變化的關系圖象如圖所示.該圖象是經過原點的一條拋物線的一部分,則變阻器R消耗的電功率P最大

為________W.2202345678910111213141516171181920212218.有研究發現,人體在注射一定劑量的某種藥物后的數小時內,體內血液中的藥物濃度(即血藥濃度)y(毫克/升)是時間t(時)的二次函數,已知某病人的三次化驗結果如下表:(1)求y與t的函數表達式;

t(時)012y(毫克/升)00.140.24解:(1)設y與t的函數表達式為y=at2+bt+c,所以y與t的函數表達式為y=-0.02t2+0.16t.23456789101112131415161711819202122(2)在注射后的第幾小時,該病人體內的血藥濃度達到最大?最大濃度是多少?

(3)若體內的血藥濃度不低于0.3毫克/升為藥物有效時間,

請你結合如圖所示的函數圖象,直接指出該病人在

注射藥物后的藥物有效時間為多少小時.因為y=-0.02t2+0.16t=-0.02(t-4)2+0.32,所以當t=4時,y最大=0.32.所以在注射后的第4小時,該病人體內的血藥濃度達到最大,最大濃度是0.32毫克/升.該病人在注射藥物后的藥物有效時間為5-3=2(小時).2345678910111213141516171181920212219.[2023·福建中考]已知拋物線y=ax2-2ax+b(a>0)經過A(2n+3,y1),B(n-1,y2)兩點,若A,B分別位于拋物線對稱軸的兩側,且y1<y2,則n的取值范圍是__________.-1<n<02345678910111213141516117182021221920.[2024·福建中考]已知二次函數y=x2-2ax+a(a≠0)的圖象經過A,B(3a,y2)兩點,則下列判斷正確的是

(

)A.可以找到一個實數a,使得y1>aB.無論實數a取什么值,都有y1>aC.可以找到一個實數a,使得y2<0D.無論實數a取什么值,都有y2<0C23456789101112131415161172018192122解:因為拋物線y=ax2+bx+3經過點A(1,0),B(3,0),所以拋物線的表達式為y=x2-4x+3.21.[2023·福建中考節選]已知拋物線y=ax2+bx+3交x軸于A(1,0),B(3,0)兩點,C,D為拋物線上不與A,B重合的相異兩點,記AB中點為E.(1)求拋物線的表達式;23456789101112131415121161718192022(2)若C(4,3),D,且m<2,求證:C,D,E三點共線.證明:設直線CE對應的函數表達式為y=kx+n(k≠0),因為E為AB的中點,所以E(2,0).又因為C(4,3),所以所以直線CE對應的函數表達式為y=

x-3.因為點D在拋物線上,所以m2-4m+3=-又因為m<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論