河北保定清苑中學2025年高三高考測試(一)數學試題理試題含解析_第1頁
河北保定清苑中學2025年高三高考測試(一)數學試題理試題含解析_第2頁
河北保定清苑中學2025年高三高考測試(一)數學試題理試題含解析_第3頁
河北保定清苑中學2025年高三高考測試(一)數學試題理試題含解析_第4頁
河北保定清苑中學2025年高三高考測試(一)數學試題理試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北保定清苑中學2025年高三高考測試(一)數學試題理試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在區間上隨機取一個數,使直線與圓相交的概率為()A. B. C. D.2.已知實數,滿足約束條件,則的取值范圍是()A. B. C. D.3.已知是虛數單位,則復數()A. B. C.2 D.4.設復數滿足,則在復平面內的對應點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知向量滿足,且與的夾角為,則()A. B. C. D.6.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.7.的展開式中,含項的系數為()A. B. C. D.8.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.9.函數的圖象與函數的圖象的交點橫坐標的和為()A. B. C. D.10.直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A.10 B.9 C.8 D.711.秦九韶是我國南寧時期的數學家,普州(現四川省安岳縣)人,他在所著的《數書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例.若輸入、的值分別為、,則輸出的值為()A. B. C. D.12.已知集合,集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.下圖是一個算法流程圖,則輸出的S的值是______.14.雙曲線的離心率為_________.15.的展開式中的系數為____.16.若、滿足約束條件,則的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某廣告商租用了一塊如圖所示的半圓形封閉區域用于產品展示,該封閉區域由以為圓心的半圓及直徑圍成.在此區域內原有一個以為直徑、為圓心的半圓形展示區,該廣告商欲在此基礎上,將其改建成一個凸四邊形的展示區,其中、分別在半圓與半圓的圓弧上,且與半圓相切于點.已知長為40米,設為.(上述圖形均視作在同一平面內)(1)記四邊形的周長為,求的表達式;(2)要使改建成的展示區的面積最大,求的值.18.(12分)在平面直角坐標系中,曲線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程以及曲線的直角坐標方程;(2)若直線與曲線、曲線在第一象限交于兩點,且,點的坐標為,求的面積.19.(12分)[選修4-4:極坐標與參數方程]在直角坐標系中,曲線的參數方程為(是參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若射線與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值20.(12分)如圖,在直角梯形中,,,,為的中點,沿將折起,使得點到點位置,且,為的中點,是上的動點(與點,不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點,使得二面角的余弦值?若存在,確定點位置;若不存在,說明理由.21.(12分)已知是拋物線的焦點,點在軸上,為坐標原點,且滿足,經過點且垂直于軸的直線與拋物線交于、兩點,且.(1)求拋物線的方程;(2)直線與拋物線交于、兩點,若,求點到直線的最大距離.22.(10分)設函數.(1)當時,求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據直線與圓相交,可求出k的取值范圍,根據幾何概型可求出相交的概率.【詳解】因為圓心,半徑,直線與圓相交,所以,解得所以相交的概率,故選C.本題主要考查了直線與圓的位置關系,幾何概型,屬于中檔題.2.B【解析】

畫出可行域,根據可行域上的點到原點距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,,三點所圍成的三角形及其內部,如圖中陰影部分,而可理解為可行域內的點到原點距離的平方,顯然原點到所在的直線的距離是可行域內的點到原點距離的最小值,此時,點到原點的距離是可行域內的點到原點距離的最大值,此時.所以的取值范圍是.故選:B本小題考查線性規劃,兩點間距離公式等基礎知識;考查運算求解能力,數形結合思想,應用意識.3.A【解析】

根據復數的基本運算求解即可.【詳解】.故選:A本題主要考查了復數的基本運算,屬于基礎題.4.C【解析】

化簡得到,得到答案.【詳解】,故,對應點在第三象限.故選:.本題考查了復數的化簡和對應象限,意在考查學生的計算能力.5.A【解析】

根據向量的運算法則展開后利用數量積的性質即可.【詳解】.故選:A.本題主要考查數量積的運算,屬于基礎題.6.D【解析】

利用余弦定理角化邊整理可得結果.【詳解】由余弦定理得:,整理可得:,.故選:.本題考查余弦定理邊角互化的應用,屬于基礎題.7.B【解析】

在二項展開式的通項公式中,令的冪指數等于,求出的值,即可求得含項的系數.【詳解】的展開式通項為,令,得,可得含項的系數為.故選:B.本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.8.B【解析】

通過拋物線的定義,轉化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準線方程為,,過作垂直直線于,由拋物線的定義可知,連結,當是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設在的方程為:,所以,解得:,所以,解得,所以,.故選:.本題考查拋物線的基本性質,直線與拋物線的位置關系,轉化思想的應用,屬于基礎題.9.B【解析】

根據兩個函數相等,求出所有交點的橫坐標,然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數的圖象與函數的圖象交點的橫坐標的和,故選B.本題主要考查三角函數的圖象及給值求角,側重考查數學建模和數學運算的核心素養.10.B【解析】

根據拋物線中過焦點的兩段線段關系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標準方程可知p=2因為直線l過拋物線的焦點,由過拋物線焦點的弦的性質可知所以因為為線段長度,都大于0,由基本不等式可知,此時所以選B本題考查了拋物線的基本性質及其簡單應用,基本不等式的用法,屬于中檔題.11.B【解析】

列出循環的每一步,由此可得出輸出的值.【詳解】由題意可得:輸入,,,;第一次循環,,,,繼續循環;第二次循環,,,,繼續循環;第三次循環,,,,跳出循環;輸出.故選:B.本題考查根據算法框圖計算輸出值,一般要列舉出算法的每一步,考查計算能力,屬于基礎題.12.D【解析】

可求出集合,,然后進行并集的運算即可.【詳解】解:,;.故選.考查描述法、區間的定義,對數函數的單調性,以及并集的運算.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據流程圖,運行程序即得.【詳解】第一次運行,;第二次運行,;第三次運行,;第四次運行;所以輸出的S的值是.故答案為:本題考查算法流程圖,是基礎題.14.2【解析】15.28【解析】

將已知式轉化為,則的展開式中的系數中的系數,根據二項式展開式可求得其值.【詳解】,所以的展開式中的系數就是中的系數,而中的系數為,展開式中的系數為故答案為:28.本題考查二項式展開式中的某特定項的系數,關鍵在于將原表達式化簡將三項的冪的形式轉化為可求的二項式的形式,屬于基礎題.16.【解析】

作出不等式組所表示的可行域,利用平移直線的方法找出使得目標函數取得最小時對應的最優解,代入目標函數計算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯立,解得,即點,平移直線,當直線經過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案為:.本題考查簡單的線性規劃問題,考查線性目標函數的最值問題,考查數形結合思想的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),.(2)【解析】

(1)由余弦定理的,然后根據直線與圓相切的性質求出,從而求出;(2)求得的表達式,通過求導研究函數的單調性求得最大值.【詳解】解:(1)連.由條件得.在三角形中,,,,由余弦定理,得,因為與半圓相切于,所以,所以,所以.所以四邊形的周長為,.(2)設四邊形的面積為,則,.所以,.令,得列表:+0-增最大值減答:要使改建成的展示區的面積最大,的值為.本題考查余弦定理、直線與圓的位置關系、導數與函數最值的關系,考查考生的邏輯思維能力,運算求解能力,以及函數與方程的思想.18.(1)的極坐標方程為,的直角坐標方程為(2)【解析】

(1)先把曲線的參數方程消參后,轉化為普通方程,再利用求得極坐標方程.將,化為,再利用求得曲線的普通方程.(2)設直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因為,故,即,即.(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.本題考查極坐標方程與直角坐標方程、參數方程與普通方程的轉化、極坐標的幾何意義,還考查推理論證能力以及數形結合思想,屬于中檔題.19.(1)的極坐標方程為.曲線的直角坐標方程為.(2)【解析】

(1)先得到的一般方程,再由極坐標化直角坐標的公式得到一般方程,將代入得,得到曲線的直角坐標方程;(2)設點、的極坐標分別為,,將分別代入曲線、極坐標方程得:,,,之后進行化一,可得到最值,此時,可求解.【詳解】(1)由得,將代入得:,故曲線的極坐標方程為.由得,將代入得,故曲線的直角坐標方程為.(2)設點、的極坐標分別為,,將分別代入曲線、極坐標方程得:,,則,其中為銳角,且滿足,,當時,取最大值,此時,這個題目考查了參數方程化為普通方程的方法,極坐標化為直角坐標的方法,以及極坐標中極徑的幾何意義,極徑代表的是曲線上的點到極點的距離,在參數方程和極坐標方程中,能表示距離的量一個是極徑,一個是t的幾何意義,其中極徑多數用于過極點的曲線,而t的應用更廣泛一些.20.(Ⅰ)見解析(Ⅱ)存在,此時為的中點.【解析】

(Ⅰ)證明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假設存在點滿足題意,過作于,平面,過作于,連接,則,過作于,連接,是二面角的平面角,設,,計算得到答案.【詳解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假設存在點滿足題意,過作于,由知,易證平面,所以平面,過作于,連接,則(三垂線定理),即是二面角的平面角,不妨設,則,在中,設(),由得,即,得,∴,依題意知,即,解得,此時為的中點.綜上知,存在點,使得二面角的余弦值,此時為的中點.本題考查了面面垂直,根據二面角確定點的位置,意在考查學生的空間想象能力和計算能力,也可以建立空間直角坐標系解得答案.21.(1);(2).【解析】

(1)求得點的坐標,可得出直線的方程,與拋物線的方程聯立,結合求出正實數的值,進而可得出拋物線的方程;(2)設點,,設的方程為,將直線的方程與拋物線的方程聯立,列出韋達定理,結合求得的值,可得出直線所過定點的坐標,由此可得出點到直線的最大距離.【詳解】(1)易知點,又,所以點,則直線的方程為.聯立,解得或,所以.故拋物線的方程為;(2)設的方程為,聯立有,設點,,則,所以.所以,解得.所以直線的方程為,恒過點.又點,故當直線與軸垂直時,點到直線的最大距離為.本題考查拋物線方程的求解,同時也考查了

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論