江蘇省淮安市經濟開發區達標名校2024屆中考數學最后沖刺濃縮卷含解析_第1頁
江蘇省淮安市經濟開發區達標名校2024屆中考數學最后沖刺濃縮卷含解析_第2頁
江蘇省淮安市經濟開發區達標名校2024屆中考數學最后沖刺濃縮卷含解析_第3頁
江蘇省淮安市經濟開發區達標名校2024屆中考數學最后沖刺濃縮卷含解析_第4頁
江蘇省淮安市經濟開發區達標名校2024屆中考數學最后沖刺濃縮卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省淮安市經濟開發區達標名校2024屆中考數學最后沖刺濃縮精華卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.將拋物線向左平移2個單位長度,再向下平移3個單位長度,得到的拋物線的函數表達式為()A.B.C.D.2.設α,β是一元二次方程x2+2x-1=0的兩個根,則αβ的值是()A.2B.1C.-2D.-13.如圖,若△ABC內接于半徑為R的⊙O,且∠A=60°,連接OB、OC,則邊BC的長為()A. B. C. D.4.如圖,A點是半圓上一個三等分點,B點是弧AN的中點,P點是直徑MN上一動點,⊙O的半徑為1,則AP+BP的最小值為A.1 B. C. D.5.如圖,點D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一條弦,則cos∠OBD=()A. B. C. D.6.已知直線m∥n,將一塊含30°角的直角三角板ABC,按如圖所示方式放置,其中A、B兩點分別落在直線m、n上,若∠1=25°,則∠2的度數是()A.25° B.30° C.35° D.55°7.如圖,將△ABC沿著DE剪成一個小三角形ADE和一個四邊形D'E'CB,若DE∥BC,四邊形D'E'CB各邊的長度如圖所示,則剪出的小三角形ADE應是()A. B. C. D.8.二次函數y=x2﹣6x+m的圖象與x軸有兩個交點,若其中一個交點的坐標為(1,0),則另一個交點的坐標為()A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)9.1cm2的電子屏上約有細菌135000個,135000用科學記數法表示為()A.0.135×106 B.1.35×105 C.13.5×104 D.135×10310.如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.若點A(1,m)在反比例函數y=的圖象上,則m的值為________.12.已知一元二次方程x2-4x-3=0的兩根為m,n,則-mn+=.13.計算:=_____.14.如圖,△ABC三邊的中線AD,BE,CF的公共點G,若,則圖中陰影部分面積是.15.如圖,將一張矩形紙片ABCD沿對角線BD折疊,點C的對應點為,再將所折得的圖形沿EF折疊,使得點D和點A重合若,,則折痕EF的長為______.16.因式分解:a3﹣2a2b+ab2=_____.三、解答題(共8題,共72分)17.(8分)“低碳生活,綠色出行”是我們倡導的一種生活方式,有關部門抽樣調查了某單位員工上下班的交通方式,繪制了兩幅統計圖:(1)樣本中的總人數為人;扇形統計十圖中“騎自行車”所在扇形的圓心角為度;(2)補全條形統計圖;(3)該單位共有1000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數不低于開私家車的人數?18.(8分)已知關于x的一元二次方程為常數.求證:不論m為何值,該方程總有兩個不相等的實數根;若該方程一個根為5,求m的值.19.(8分)如圖1,在矩形ABCD中,AD=4,AB=2,將矩形ABCD繞點A逆時針旋轉α(0<α<90°)得到矩形AEFG.延長CB與EF交于點H.(1)求證:BH=EH;(2)如圖2,當點G落在線段BC上時,求點B經過的路徑長.20.(8分)為營造“安全出行”的良好交通氛圍,實時監控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CD與AM交于點C,橫桿DE∥AB,攝像頭EF⊥DE于點E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度數;求攝像頭下端點F到地面AB的距離.(精確到百分位)21.(8分)某體育用品商場預測某品牌運動服能夠暢銷,就用32000元購進了一批這種運動服,上市后很快脫銷,商場又用68000元購進第二批這種運動服,所購數量是第一批購進數量的2倍,但每套進價多了10元.該商場兩次共購進這種運動服多少套?如果這兩批運動服每套的售價相同,且全部售完后總利潤不低于20%,那么每套售價至少是多少元?22.(10分)如圖,在4×4的正方形方格中,△ABC和△DEF的頂點都在邊長為1的小正方形的頂點上.填空:∠ABC=°,BC=;判斷△ABC與△DEF是否相似,并證明你的結論.23.(12分)為了提高學生書寫漢字的能力,增強保護漢子的意識,某校舉辦了首屆“漢字聽寫大賽”,學生經選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學生成績為(分),且,將其按分數段分為五組,繪制出以下不完整表格:組別

成績(分)

頻數(人數)

頻率

2

0.04

10

0.2

14

b

a

0.32

8

0.16

請根據表格提供的信息,解答以下問題:(1)本次決賽共有名學生參加;(2)直接寫出表中a=,b=;(3)請補全下面相應的頻數分布直方圖;(4)若決賽成績不低于80分為優秀,則本次大賽的優秀率為.24.關于x的一元二次方程x2+2x+2m=0有兩個不相等的實數根.(1)求m的取值范圍;(2)若x1,x2是一元二次方程x2+2x+2m=0的兩個根,且x12+x22﹣x1x2=8,求m的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

先確定拋物線y=x2的頂點坐標為(0,0),再根據點平移的規律得到點(0,0)平移后所得對應點的坐標為(-2,-1),然后根據頂點式寫出平移后的拋物線解析式.【詳解】拋物線y=x2的頂點坐標為(0,0),把點(0,0)向左平移1個單位,再向下平移2個單位長度所得對應點的坐標為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.

故選A.2、D【解析】試題分析:∵α、β是一元二次方程x2+2x-1=0的兩個根,∴αβ=考點:根與系數的關系.3、D【解析】

延長BO交圓于D,連接CD,則∠BCD=90°,∠D=∠A=60°;又BD=2R,根據銳角三角函數的定義得BC=R.【詳解】解:延長BO交⊙O于D,連接CD,則∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故選D.【點睛】此題綜合運用了圓周角定理、直角三角形30°角的性質、勾股定理,注意:作直徑構造直角三角形是解決本題的關鍵.4、C【解析】作點A關于MN的對稱點A′,連接A′B,交MN于點P,則PA+PB最小,連接OA′,AA′.∵點A與A′關于MN對稱,點A是半圓上的一個三等分點,∴∠A′ON=∠AON=60°,PA=PA′,∵點B是弧AN∧的中點,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=∴PA+PB=PA′+PB=A′B=故選:C.5、C【解析】

根據圓的弦的性質,連接DC,計算CD的長,再根據直角三角形的三角函數計算即可.【詳解】∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,連接CD,如圖所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=.故選:C.【點睛】本題主要三角函數的計算,結合考查圓性質的計算,關鍵在于利用等量替代原則.6、C【解析】

根據平行線的性質即可得到∠3的度數,再根據三角形內角和定理,即可得到結論.【詳解】解:∵直線m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故選C.【點睛】本題考查平行線的性質,熟練掌握平行線的性質是解題的關鍵.7、C【解析】

利用相似三角形的性質即可判斷.【詳解】設AD=x,AE=y,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故選:C.【點睛】考查平行線的性質,相似三角形的判定和性質等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.8、C【解析】

根據二次函數解析式求得對稱軸是x=3,由拋物線的對稱性得到答案.【詳解】解:由二次函數得到對稱軸是直線,則拋物線與軸的兩個交點坐標關于直線對稱,∵其中一個交點的坐標為,則另一個交點的坐標為,故選C.【點睛】考查拋物線與x軸的交點坐標,解題關鍵是掌握拋物線的對稱性質.9、B【解析】

根據科學記數法的表示形式(a×10n的形式,其中1≤|a|<10,n為整數,確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同;當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數).【詳解】解:135000用科學記數法表示為:1.35×1.故選B.【點睛】科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.10、A【解析】∵△DEF是△AEF翻折而成,

∴△DEF≌△AEF,∠A=∠EDF,

∵△ABC是等腰直角三角形,

∴∠EDF=45°,由三角形外角性質得∠CDF+45°=∠BED+45°,

∴∠BED=∠CDF,

設CD=1,CF=x,則CA=CB=2,

∴DF=FA=2-x,

∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,

解得x=,

∴sin∠BED=sin∠CDF=.

故選:A.二、填空題(本大題共6個小題,每小題3分,共18分)11、3【解析】試題解析:把A(1,m)代入y=得:m=3.所以m的值為3.12、1【解析】試題分析:由m與n為已知方程的解,利用根與系數的關系求出m+n=4,mn=﹣3,將所求式子利用完全平方公式變形后,即﹣mn+=﹣3mn=16+9=1.故答案為1.考點:根與系數的關系.13、-【解析】

根據二次根式的運算法則即可求出答案.【詳解】原式=2.故答案為-.【點睛】本題考查二次根式的運算法則,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.14、4【解析】試題分析:由中線性質,可得AG=2GD,則,∴陰影部分的面積為4;其實圖中各個單獨小三角形面積都相等本題雖然超綱,但學生容易蒙對的.考點:中線的性質.15、【解析】

首先由折疊的性質與矩形的性質,證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長,又由≌,易得:,由三角函數的性質即可求得MF的長,又由中位線的性質求得EM的長,則問題得解【詳解】如圖,設與AD交于N,EF與AD交于M,根據折疊的性質可得:,,,四邊形ABCD是矩形,,,,,,,設,則,在中,,,,即,,,,≌,,,,,,由折疊的性質可得:,,,,,故答案為.【點睛】本題考查了折疊的性質,全等三角形的判定與性質,三角函數的性質以及勾股定理等知識,綜合性較強,有一定的難度,解題時要注意數形結合思想與方程思想的應用.16、a(a﹣b)1.【解析】【分析】先提公因式a,然后再利用完全平方公式進行分解即可.【詳解】原式=a(a1﹣1ab+b1)=a(a﹣b)1,故答案為a(a﹣b)1.【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.三、解答題(共8題,共72分)17、(1)80、72;(2)16人;(3)50人【解析】

(1)用步行人數除以其所占的百分比即可得到樣本總人數:810%=80(人);用總人數乘以開私家車的所占百分比即可求出m,即m=8025%=20;用3600乘以騎自行車所占的百分比即可求出其所在扇形的圓心角:360(1-10%-25%-45%)=.(2)根據扇形統計圖算出騎自行車的所占百分比,再用總人數乘以該百分比即可求出騎自行車的人數,補全條形圖即可.(3)依題意設原來開私家車的人中有x人改為騎自行車,用x分別表示改變出行方式后的騎自行車和開私家車的人數,根據題意列出一元一次不等式,解不等式即可.【詳解】解:(1)樣本中的總人數為8÷10%=80人,∵騎自行車的百分比為1﹣(10%+25%+45%)=20%,∴扇形統計十圖中“騎自行車”所在扇形的圓心角為360°×20%=72°(2)騎自行車的人數為80×20%=16人,補全圖形如下:(3)設原來開私家車的人中有x人改騎自行車,由題意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,解得:x≥50,∴原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數不低于開私家車的人數.【點睛】本題主要考查統計圖表和一元一次不等式的應用。18、(1)詳見解析;(2)的值為3或1.【解析】

(1)將原方程整理成一般形式,令即可求解,(2)將x=1代入,求得m的值,再重新解方程即可.【詳解】證明:原方程可化為,,,,,不論m為何值,該方程總有兩個不相等的實數根.解:將代入原方程,得:,解得:,.的值為3或1.【點睛】本題考查了參數對一元二次方程根的影響.中等難度.關鍵是將根據不同情況討論參數的取值范圍.19、(1)見解析;(2)B點經過的路徑長為π.【解析】

(1)、連接AH,根據旋轉圖形的性質得出AB=AE,∠ABH=∠AEH=90°,根據AH為公共邊得出Rt△ABH和Rt△AEH全等,從而得出答案;(2)、根據題意得出∠EAB的度數,然后根據弧長的計算公式得出答案.【詳解】(1)、證明:如圖1中,連接AH,由旋轉可得AB=AE,∠ABH=∠AEH=90°,又∵AH=AH,∴Rt△ABH≌Rt△AEH,∴BH=EH.(2)、解:由旋轉可得AG=AD=4,AE=AB,∠EAG=∠BAC=90°,在Rt△ABG中,AG=4,AB=2,∴cos∠BAG=,∴∠BAG=30°,∴∠EAB=60°,∴弧BE的長為=π,即B點經過的路徑長為π.【點睛】本題主要考查的是旋轉圖形的性質以及扇形的弧長計算公式,屬于中等難度的題型.明白旋轉圖形的性質是解決這個問題的關鍵.20、(1)(2)6.03米【解析】

分析:延長ED,AM交于點P,由∠CDE=162°及三角形外角的性質可得出結果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.詳解:(1)如圖,延長ED,AM交于點P,∵DE∥AB,∴,即∠MPD=90°∵∠CDE=162°∴(2)如圖,在Rt△PCD中,CD=3米,∴PC=米∵AC=5.5米,EF=0.4米,∴米答:攝像頭下端點F到地面AB的距離為6.03米.點睛:本題考查了解直角三角形的應用,解決此類問題要了解角之間的關系,找到已知和未知相關聯的的直角三角形,當圖形中沒有直角三角形時,要通過作高線或垂線構造直角三角形.21、(1)商場兩次共購進這種運動服600套;(2)每套運動服的售價至少是200元.【解析】

(1)設商場第一次購進套運動服,根據“第二批所購數量是第一批購進數量的2倍,但每套進價多了10元”即可列方程求解;(2)設每套運動服的售價為y元,根據“這兩批運動服每套的售價相同,且全部售完后總利潤率不低于20%”即可列不等式求解.【詳解】(1)設商場第一次購進x套運動服,由題意得解這個方程,得經檢驗,是所列方程的根.答:商場兩次共購進這種運動服600套;(2)設每套運動服的售價為y元,由題意得,解這個不等式,得答:每套運動服的售價至少是200元.【點睛】此題主要考查分式方程的應用,一元一次不等式的應用,解題的關鍵是讀懂題意,找到等量及不等關系,正確列方程和不等式求解.22、(1)(2)△ABC∽△DEF.【解析】

(1)根據已知條件,結合網格可以求出∠ABC的度數,根據,△ABC和△DEF的頂點都在邊長為1的小正方形的頂點上,利用勾股定理即可求出線段BC的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論