




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
ApplicationReportSLAA701A–October2016–RevisedNovember2016
LCFilterDesign
ABSTRACT
Inhigher-powerclass-Damplifiers,generallyabove10Wofoutputpower,afilterontheoutputofthe
amplifierisrequired.Thefilterispassiveinnatureandusesbothaninductorandacapacitoroneach
outputterminal.Therefore,itisreferredtoasanLCfilter.PropercomponentselectionoftheLCfilteris
criticaltomeetthedesiredaudioperformance,efficiency,EMC/EMIrequirements,andcostfortheend
application.ThisapplicationreportservesasaguidetoaidinthesectionofLCfiltercomponentsfor
class-Damplifierstomeettarget-designgoalsoftheendsystem.
Contents
1Class-DOutputConfigurations3
1.1Bridged-TiedLoad(BTL)3
1.2ParallelBridge-TiedLoad(PBTL)3
1.3Single-Ended(SE)4
2Class-DModulationSchemes5
2.1AD(Traditional)Modulation5
2.2BDModulation6
3Class-DOutputLCFilter7
3.1OutputLCFilterFrequencyResponseProperties7
3.2Class-DBTLOutputLCFilterTopologies8
3.3Single-EndedFilterCalculations9
3.4Type-1FilterAnalysis10
3.5Type-2FilterAnalysis12
3.6HybridFilterforADModulation14
3.7ADModulationWithType-1orType-2Filters17
3.8LCFilterQuickSelectionGuide17
4InductorSelectionforHigh-PerformanceClass-DAudio18
4.1InductorLinearity18
4.2RippleCurrent20
4.3MinimumInductance21
4.4CoreLoss22
4.5DCResistance(DCR)23
4.6InductorStudyWiththeTPA3251Device24
5CapacitorConsiderations28
5.1Class-DOutputVoltageOverview28
5.2CapacitorRatingsandSpecifications30
5.3CapacitorTypes35
6RelatedCollateral40
ListofFigures
1Stereo(Two-Channel)BTLClass-DAmplifier3
2MonoPBTLClass-DAmplifier4
3FourSingle-EndedOutputs4
4AD(Traditional)Modulation5
5BDModulation6
Alltrademarksarethepropertyoftheirrespectiveowners.
SLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedback
Copyright?2016,TexasInstrumentsIncorporated
LCFilterDesign
1
6EffectofQonFrequencyResponse7
7Single-EndedLCFilter9
8Type-1FilterforADModulation10
9Type-1FilterEquivalentCircuit10
10Type-1Single-EndedEquivalentCircuit1111Type-1LCFilterResponseWithC
BTL=0.68μFandLBTL=10μH1212Type-2FilterforBDorADModulation12
13Type-2FilterEquivalentCircuit13
14Type-2FilterSingle-EndedEquivalentCircuit1315Type-2LCFilterResponseWithC
g=1.5μFandLBTL=10μH1416HybridFilterforADModulation15
17HybridFilterSingle-EndedEquivalentCircuit1518HybridLCFilterResponseWithC
BTL=0.63μF,Cg=0.12μF,andLBTL=10μH1619Type-1ADModulationFilterConvertedtoType-217
20TypicalInductorSaturationCurve18
21TPA3251EVMTHD+NvsOutputPower,4Ω19
22TPA3251EVMTHD+NvsSignalFrequency,20W,4Ω19
23PVDD/2Common-ModeVoltage20
24PWMVoltageWaveform21
25InductorVoltageandCurrent21
26InductorCore-LossModel22
27TPA3251PowerDissipationWithInductorDCRPVDD=30V,600kHz,2×BTL,4Ω23
28TPA3251THD+NvsOutputPowerforVariousInductors600kHz,36V,4Ω26
29TPA3251THD+NvsFrequencyforVariousInductors20W,600kHz,36V,4Ω26
30Class-DSEFilter-ADofBDMode28
31LCFilterFrequencyResponse28
32Class-DLCFilterOutput29
33Class-DLCFilterOutputWithRipple29
34EquivalentSeriesResistance32
35DissipationFactor32
36KemetPHE426HB7100JR06Capacitor37
37VishayMMKP383Capacitor37
38ACVoltageRatinglessthan85°C37
39ACVoltageRatingbetween85°Cand105°C37
40Film-CapacitorTemperatureCoefficient38
41CeramicCapacitor%CapacitanceChangevsDCVoltage39
ListofTables
1Class-DFilterTypesandTheirSEEquivalentCircuits8
2FilterComponents–R
BTL=8?173FilterComponents–R
BTL=6?174FilterComponents–R
BTL=4?175AverageChangeinInductancefor10InductorSamples186R
P,DissipationFactor,andIdlePowerMeasuredfor10Inductors227ResultsofVariousInductors25
8RecommendedInductorsWiththeTPA32xxClass-DFamily27
9CapacitorRatingsandSpecifications30
10CapacitorTypeComparison35
11Capacitor-TypeToleranceComparison35
2LCFilterDesignSLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedbackCopyright?2016,TexasInstrumentsIncorporated
Class-DOutputConfigurations
12CapacitorReliabilityParameterComparison36
13Film-CapacitorKeyParameters36
14ParameterandDescriptionsforSelectingMetalizedFilmCapacitors38
15RemainingCodeOptions40
1Class-DOutputConfigurations
SomeTIclass-Daudioamplifierssupportmultipleoutputconfigurationsinasingledevice.Thisallowsfor
ahighlevelofflexibilityfortheendapplication.
1.1Bridged-TiedLoad(BTL)
Bridge-tiedload(BTL)isthemostcommonoutputconfigurationforaclass-Damplifier.ABTL
configurationconsistsofoneamplifierdrivingonesideofaloadandanotheramplifier,withaninverted
signalfromthefirstamplifier,drivingtheothersideoftheload.Thisresultsin2×morevoltageswing
acrosstheloadforagivensupplyvoltagewhencomparedtoasingle-endedconfigurationwhereoneside
oftheloadistiedtotheamplifieroutputandtheothersidetoground.Twicethevoltageswingacrossthe
loadequatestoa4×powerincreasebecauseP=V2/R.So,aBTLloadconfigurationoffers4×more
powertotheloadthanasingle-endedconfigurationfromthesamesupplyvoltage.
Becauseeachsideoftheloadisdriven,theloadisnotground-referenced.Therefore,thevoltageacross
theloadmustbemeasureddifferentiallyrelativetoground.
OutA
OutB
Class-D
Amplifier
OutC
OutD
Figure1.Stereo(Two-Channel)BTLClass-DAmplifier
1.2ParallelBridge-TiedLoad(PBTL)
Parallelbridged-tiedload(PBTL)isanoutputconfigurationthattakesastereoBTLamplifierandconnects
theoutputsinparallelforasinglemonochannel.Althoughthemaximumoutputvoltageswingisthesame
foraBTLoutputconfiguration,themaximumcurrenthasbeenincreasedbecauseeachoutputsharesthe
loadcurrent.Thisoftenallowsforlower-impedanceloadstobedrivenwithhigheroutputpowerwhen
comparedtoBTLwiththesamesupplyvoltage.TheamplifiercurrentlimithasdoubledcomparedtoBTL.
SLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedback
Copyright?2016,TexasInstrumentsIncorporated
LCFilterDesign
3
Class-DOutputConfigurations
OutA
OutB
Class-D
Amplifier
OutC
OutD
Figure2.MonoPBTLClass-DAmplifier
1.3Single-Ended(SE)
Inasingle-ended(SE)configuration,onlyoneoutputisusedtodrivetheloadratherthanapairofoutputs
operatingoutofphase,asfoundinBTLandPBTLconfigurations.Forthisreason,onlyhalfoftheSignal
swingisavailablecomparedtoBTLoraquarterofthetotaloutputpower.Howeverthisconfigurationcan
allowforfourchannelswithasinglestereoBTLamplifierasshowninFigure3.Someamplifiersalsoallow
acombinationof1×BTLand2×SEchannelsforsupportof2.1audiosystemswithasingledevice.
DuetothePWMmodulationofaclass-Damplifier,aDCvoltageofPVDD/2orhalfofthesupplyvoltage
ispresentaftertheLCfilter.InSEmode,becausethespeakerisnowground-referenced,eitheraDC
blockingcapacitororsomeothermeansofreferencingthespeakertoPVDD/2isnecessarysothatno
DCvoltageappearsacrossthespeaker.
OutA
OutB
Class-D
Amplifier
OutC
OutD
Figure3.FourSingle-EndedOutputs
4LCFilterDesignSLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedbackCopyright?2016,TexasInstrumentsIncorporated
Class-DModulationSchemes
2Class-DModulationSchemes
ThissectiondescribeshowanalogsignalsareconvertedtoPWMsignalstodrivetheMOSFETsinthe
outputbridge.Mostclass-Damplifierscanbeclassifiedasusingoneoftwomodulationtechniques,AD
(traditional)orBDmodulation.
2.1AD(Traditional)Modulation
Thetraditionalswitchingtechnique(ADmodulation)modulatesthedutycycleofarectangularwaveform,
suchthatitsaveragecontentcorrespondstotheinputanalogsignal.TheBTLoutputs(seeFigure4)are
theinverseofeachother.ADmodulationhasnosignificantcommon-modeswitchingcontentinitsoutput.
However,thereisacommon-modeDCvoltageduetotheaveragevalueofthePWMswitching.Because
bothsidesoftheloadseethisDCvoltagelevel,itdoesnotcontributetopowerdissipationacrossthe
load.ThisDCvoltageisequaltoPVDD/2,orhalfofthesupplyvoltage.TheTPA312xD2familyemploys
ADmodulation.AllTASmodulatorscanbeconfiguredforADmodulation.
Figure4.AD(Traditional)Modulation
Becausetheswitchingwaveformisnearlyentirelydifferential,aBTL-connectedloadacrosstheA-legand
B-legseesthefullswitchingwaveform.Atidle,theamplifierswitchesatthenominalPWMfrequencywith
a50%dutycycleacrosstheload.Thiscausessignificantcurrentflowandpowerdissipationintotheload.
AnLCfilterisnecessarytoreducethecurrenttoasmallresidualrippleforgoodefficiency.
Generally,thelowertheripplecurrentforanADmodulationclass-Damplifier,thebettertheefficiencydue
toreducedloaddissipationandreducedI2RlossacrossRDS(on)oftheoutputFETs.
SLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedback
Copyright?2016,TexasInstrumentsIncorporated
LCFilterDesign
5
Class-DModulationSchemes
2.2BDModulation
TheBDmodulationswitchingtechniquemodulatesthedutycycleofthedifferenceoftheoutputsignals
suchthatitsaveragecontentcorrespondstotheinputanalogsignal.TheBTLoutputs(seeFigure5)are
nottheinverseofeachother.BDmodulationhassignificantcommon-modecontentinitsoutput.Some
TASmodulatorscanbealsobeconfiguredforBDmodulation.
Figure5.BDModulation
6LCFilterDesignSLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedbackCopyright?2016,TexasInstrumentsIncorporated
Class-DOutputLCFilter
3Class-DOutputLCFilter
3.1OutputLCFilterFrequencyResponseProperties
Thefrequencyresponseofthesecond-orderclass-DLCoutputfilteriscriticalwhenselectingthe
componentvaluesfortheinductorandcapacitor.TheLCfilterresponsealsovarieswithspeakerload
impedance.TheloadimpedancedeterminesthedampingratiooftheoutputLCfilterandisclassifiedas
overdamped,criticallydamped,orunderdamped.Itisalsoimportanttounderstandthespeakerload
impedancevariationsfortheapplicationandselecttheLandCvaluesthatsuittheexpectedload
variations.Ideally,theLCfiltervalueisselectedforacriticallydamped,flatpassband,andphase
response.Twoconsiderationswhenselectingcomponentsforthesecond-orderlow-passfilteristhecut-
offfrequencyandQfactorordampingratio.
Figure6.EffectofQonFrequencyResponse
TIrecommendsusingasecond-orderButterworthlow-passfilterbecauseofitsflatpass-bandandphase
response.TIdoesnotrecommendtheuseofLCfiltersthatpeakexcessively,liketheunderdampedfilter
responseshowninFigure6.Athighfrequency,thepeaksaregenerallyharshtothehumanearandcan
alsotriggertheprotectioncircuitry,suchasovercurrent,ofsomeamplifiers.However,overdampedfilters
resultinattenuationofhigh-frequencyaudiocontentintheaudioband.
SLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedback
Copyright?2016,TexasInstrumentsIncorporated
LCFilterDesign
7
Class-DOutputLCFilter
3.2Class-DBTLOutputLCFilterTopologies
Forclass-Damplifiers,thereareprimarilytwofiltertypesuseddependingonthemodulationscheme.The
Type-1filterisadifferentialfilterusedforADmodulationamplifiersonly.TheType-2filterisacommon-
modefilterprimarilyusedforBDmodulation.
Table1showseachfiltertypeandtheassociatedsingle-endedequivalentthatisusedlaterinthissection
forfrequencyresponseanddampinganalysis.Thesingle-endedequivalentisusedtomakethe
computationsforeachfiltertypeeasier.
Table1.Class-DFilterTypesandTheirSEEquivalentCircuits
Class-DBTLFilterTypes
Type-1Type-2Hybrid
LBTL
LBTL
LBTL
Vout+
Vout+
Vout+
Cg
Cg
CBTL
CBTL
RBTL
RBTL
RBTL
Vout-
Vout-
Vout-
Cg
Cg
LBTL
LBTL
LBTL
Type-1Single-EndedEquivalentType-2Single-EndedEquivalentHybridSingle-EndedEquivalent
LBTL
LBTL
LBTL
++
++
+
+
Vin
C=2xCBTLRL=
RBTL/2
Vout
VinC=Cg
RL=Vout
Vin
RBTL/2C=2xCBTL+Cg
RL=
RBTL/2
Vout
__
__
_
_
Class-D
Modulation:AD
Class-D
Modulation:
BDorAD
(seeSection3.7)
Class-D
Modulation:AD
FilterType:DifferentialFilterType:CommonModeFilterType:Hybrid
CBTL=Differentialbridgedtiedloadcapacitor
Cg=Single-endedcapacitortoground
RBTL=Differentialloadimpedance
LBTL=Seriesinductor
8LCFilterDesignSLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedbackCopyright?2016,TexasInstrumentsIncorporated
Class-DOutputLCFilter
3.3Single-EndedFilterCalculations
Sincethegoalistousethesingle-endedequivalentofeachfiltertypeforeasyanalysis,thefrequency
responseofthesingle-endedfiltermustbeknown.
L
+
+
Vin
CRLVout
_
_
Figure7.Single-EndedLCFilter
Theequationsforthesingle-endedLCfiltershowninFigure7follow:
f
0
1
w
0
==-
CutofffrequencyofsingleendedLCfilter
22LC
pp′
(1)
w0=2pf0Conversionbetweenradiansandfrequencyinhertz
(2)
C
QRQualityFactorQ
=
L
L
(3)
11
z==
2Q
2′R
L
C
L
DampingRatio
(4)
Aspreviouslymentioned,itisusuallydesirabletodesignafilterthatiscriticallydampedwithaButterworth
response.Forthistypeoffilter,Q=0.707=1/√2.BysubstitutingQ=1/√2intoequationsforCut-off
FrequencyandQualityFactorpreviouslylisted,LandCvaluescanbederivedforacriticallydamped
systemassumingthedesiredcut-offfrequency,ωo,isknown.
R2
′
L
LInductorvalueforcriticallydampedButterworthfilter
=
w
0
(5)
1
CCapacitorvalueforcriticallydampedButterworthfilter
=
w′′
R2
0L
(6)
SLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedback
Copyright?2016,TexasInstrumentsIncorporated
LCFilterDesign
9
Class-DOutputLCFilter
3.4Type-1FilterAnalysis
TheType-1filterisadifferentialfilterdesignedforADmodulationclass-Damplifiers.ADmodulationhas
nosignificantcommon-modecontentonitsoutputs,thusonlythedifferentialmodeisneededforanalysis.ThedifferentialBTLcomponents,CBTLandRBTLoftheADmodulationLCfiltershowninFigure8,canbe
simplifiedtoasingle-endedequivalent.
LBTL
Vout+
+
CBTL
Vout
_
RBTL
Vout-
LBTL
Figure8.Type-1FilterforADModulation
Frominspection,theType-1filtercanbesplitintoanequivalentcommon-modefilterasshowninFigure9.
CBTLmustbescaledbyafactorof2sinceinthecommon-modemodel,thecapacitorsappearinseries.
LBTL
Vout+
+
2xCBTL
Vout
_
RBTL/2
+
2xCBTL
Vout
_
Vout-
RBTL/2
LBTL
Figure9.Type-1FilterEquivalentCircuit
10LCFilterDesignSLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedbackCopyright?2016,TexasInstrumentsIncorporated
Class-DOutputLCFilter
Nowthesingle-endedequivalentcanbedrawnasshowninFigure10.Thedifferencebetweentheoriginalfilterandsingle-endedequivalentisthatCBTLhasbeenmultipliedbyafactoroftwoandRBTLhasbeen
dividedbyafactoroftwo.
Whenusingthesingle-endedequivalentcircuittofindthefiltercomponentvalues,CBTL=C/2.
LBTL
+
+
Vin
C=2xCBTLRL=
RBTL/2
Vout
_
_
Figure10.Type-1Single-EndedEquivalentCircuit
3.4.1Type-1FrequencyResponseExample
UsingtheequationsoutlinedinSection3.3,afilterisdesignedwithatargeted40-kHzbandwidthand4-?speakerload.
TheLandCvaluescanbecalculatedasfollows:
R
R′2
BTL
L
L=whereR=,R=4W,w=2pf,andf=
LBTL000
w2
0
R
BTL
′2
22
2
L===11.25mH
2pf2p′40000
0
40kHz
Theneareststandardinductorvalueis10μH.
L=L=10mH
BTL
R1
BTL
C=whereR=,R=4W,w=2pf,andf=40kHz
LBTL000
w′R′2
2
0L
111
C====1.4mF
R2400002
w′R′2p′′2
BTL
0f2
L
0
2p′′
2
C
C==0.70mF?0.68mF
BTL
2
Thestandardcapacitorvalueis0.68μF.
Usingthestandardinductorandcapacitorvaluesfromthepreviouscalculations,theQfactorfor4?is:
R2C-
′′
6
C1.3610
BTLBTL
QR20.737
====
L6
L2L1010
-
BTL
′
(7)
WiththetargetedQof1/√2≈0.707andthecut-offfrequencyis:
f
0
111
====
2LC2L2C2(1010)(1.3610)
p′p′′
--66
66
--
BTLBTLp′′′
43156Hz
Thepeakingatcut-offfrequencyindBis:
Peaking(w)=20logQ=-2.65dB
010
SLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedback
Copyright?2016,TexasInstrumentsIncorporated
LCFilterDesign
11
Class-DOutputLCFilter
Usingthetransferfunction(Equation8),thefrequencyresponseoftheselectedLCfiltercanbeplottedfor
differentspeakerloadstoprovideacompletevisualevaluationoftheLCfilterresponsewithvarious
speakerloads.
H(s)
Diff
V(s)1
OUT
==
V(s)
L
INBTL2
1s2Cs
+′′′+
BTL
R
BTL
2
(8)
20
10
0
-10
-20
2:-303:
4:6:8:
-40
101001k10k100k1M
Frequency(Hz)
D001
Figure11.Type-1LCFilterResponseWithCBTL=0.68μFandLBTL=10μH
3.5Type-2FilterAnalysis
TheType-2class-Dfilterisacommon-modefilterdesignedforBDorADmodulationamplifiers.Sincethe
Type-2filteriscommonmode,itcanbeeasilyconvertedintoitsequivalentsingle-endedform.Thecommon-modeBTLcomponentsCganddifferentialloadRBTLoftheLCfiltershowninFigure12,canbe
simplifiedtoasingle-endedequivalent.
LBTL
Vout+
+
Cg
Vout
RBTL_
Vout-
Cg
LBTL
Figure12.Type-2FilterforBDorADModulation
12LCFilterDesignSLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedbackCopyright?2016,TexasInstrumentsIncorporated
Class-DOutputLCFilter
Frominspection,theType-2filtercanbesplitintoanequivalentcommon-modefilterasshownin
Figure13.
LBTL
Vout+
+
Cg
Vout
_
RBTL/2
+
Cg
Vout
_Vout-RBTL/2
LBTL
Figure13.Type-2FilterEquivalentCircuit
Nowthesingle-endedequivalentcanbedrawn.Theonlydifferenceforsingle-endedanalysisisthatRBTL
hasbeendividedbyafactoroftwo.
LBTL
+
+
VinC=Cg
RL=
RBTL/2
Vout
_
_
Figure14.Type-2FilterSingle-EndedEquivalentCircuit
3.5.1Type-2FrequencyResponseExample
UsingtheequationsoutlinedinSection3.3,afilterisdesignedwithatargeted40-kHzbandwidthand4-?speakerload.
R
R′2
BTL
L
L=whereR=,R=4W,w=2pf,andf=
LBTL000
w2
0
R
BTL
′2
22
2
L===11.25mH
2pf2p′40000
0
40kHz
Theneareststandardinductorvalueis10μH.
L=L=10mH
BTL
R1
BTL
C=whereR=,R=4W,w=2pf,andf=40kHz
LBTL000
w′R′2
2
0L
111
C====1.4mF
R2400002
w′R′2p′′2
02f′2
LBTL
p′
0
2
C=C=1.4mF?1.5mF
g
Thestandardcapacitorvalueis1.5μF.
SLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedback
Copyright?2016,TexasInstrumentsIncorporated
LCFilterDesign
13
Class-DOutputLCFilter
Usingthestandardinductorandcapacitorvaluesfromthepreviouscalculations,theQfactorfor4?is:
RC
-
6
C1.510
BTLg′
QR20.775
====
L6
L2L1010-
BTL
′
WiththetargetedQof1/√2≈0.707andthecut-offfrequencyis:
f
0
111
====
2LC2LC2(10106)(1.5106)
p′p′
--
BTLg
p′′′
41093Hz
Thepeakingatthecut-offfrequencyindBis:
Peaking(w)=20logQ=-2.22dB
010
UsingthetransferfunctionbelowthefrequencyresponseoftheselectedLCfiltercanbeplottedfor
differentspeakerloadstoprovideacompletevisualevaluationoftheLCfilterresponsewithvarious
speakerloads.
H(s)
Diff
V(s)1
OUT
==
V(s)
L
INBTL2
1sLCs
+′+′+
BTLg
R
BTL
2
(9)
20
10
0
-10
-20
2:-303:
4:6:8:
-40
101001k10k100k1M
Frequency(Hz)
D002
Figure15.Type-2LCFilterResponseWithCg=1.5μFandLBTL=10μH
3.6HybridFilterforADModulation
Forsomeapplications,itmaybebeneficialtouseahybridfiltercombiningtheType-1andType-2filtersforanADmodulationamplifier.ByaddingCgtotheType-1filter,thehigh-frequencydecouplingtoground
isimproved,sincetheamplifierADPWMmodulationisneverperfectlydifferential.ForthisconfigurationTIrecommendsCg=0.1×CBTL.
14LCFilterDesignSLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedbackCopyright?2016,TexasInstrumentsIncorporated
Class-DOutputLCFilter
LBTL
Vout+
+
Cg
CBTL
Vout
RBTL
_
Vout-
Cg
LBTL
Figure16.HybridFilterforADModulation
FromthepreviousstudyoftheType-1andType-2filters,theHybridFiltersingle-endedequivalentcanbe
easilydrawn.
+
+
Vin
C=2xCBTL+Cg
RL=
RBTL/2
Vout
_
_
Figure17.HybridFilterSingle-EndedEquivalentCircuit
3.6.1HybridFilterFrequencyResponseExample
UsingtheequationsoutlinedinSection3.3,afilterisdesignedwithatargeted40-kHzbandwidthand4-?speakerload.
R
R′2
BTL
L
L=whereR=,R=4W,w=2pf,andf=
LBTL000
w2
0
R
BTL
′2
22
2
L===11.25mH
2pf2p′40000
0
40kHz
Theneareststandardinductorvalueis10μH.
SLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedback
Copyright?2016,TexasInstrumentsIncorporated
LCFilterDesign
15
Class-DOutputLCFilter
L=L=10mH
BTL
R1
BTL
C=whereR=,R=4W,w=2pf,andf=40kHz
LBTL000
w′R′2
0L
111
C====1.4mF
R2400002w′p′′
R′222
BTL
0
0
L2
pf′′
2
C=2′C+CwhereC
BTLgg
?
2′C
BTL
10
2′C
BTL
C=2′C+=1.4mF
BTL
10
C2′C
BTL
C==0.63mFandC==0.12mF
BTLg
2.210
Thestandardcapacitorvaluesare0.63μFand0.12μF.
Usingthestandardinductorandcapacitorvaluesfromthepreviouscalculations,theQfactorfor4?is:
R2.2C-
6
C′1.38′10
BTLBTL
QR20.743
L2L1010-
====
L6
BTL
′
WiththetargetedQof1/√2≈0.707andthecut-offfrequencyis:
f
0
111
====
2LC2L2.2C2(1010)(1.3810)
p′p′′
66
--
BTLBTL
p′′′
42843Hz
Thepeakingatthecut-offfrequencyindBis:
Peaking(w)=20logQ=-2.58dB
010
UsingthetransferfunctionbelowthefrequencyresponseoftheselectedLCfiltercanbeplottedfor
differentspeakerloadstoprovideacompletevisualevaluationoftheLCfilterresponsewithvarious
speakerloads.
V(s)1
OUT
H(s)==
Diff
V(s)
L
IN
BTL2
1sL2CCs
+′+′′++
BTLBTLg
R
BTL
2
(10)
20
10
0
-10
-20
2:-303:
4:6:8:
-40
101001k10k100k1M
Frequency(Hz)
D003
Figure18.HybridLCFilterResponseWithCBTL=0.63μF,Cg=0.12μF,andLBTL=10μH
16LCFilterDesignSLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedbackCopyright?2016,TexasInstrumentsIncorporated
Class-DOutputLCFilter
3.7ADModulationWithType-1orType-2Filters
SincetheCgcapacitorsontheType-2filtershareacommonnodethroughground,differentialsignalswill
seeacapacitancevalueofCg/2sincethecapacitorsappearinseriesfordifferentialsignalsonly.
Therefore,withproperselectionoftheCgcapacitancevalue,theType-2canalsobeusedforAD
modulationclass-Damplifierswhichrequireadifferentialfilter.ConversionfromType-1toType-2onlyrequiresscalingofCBTLbyafactorof2.Thatis,Cg=2xCBTLforidenticalfiltercut-offfrequencyand
dampingfactor.
LBTL
Vout+
+
Vout+
Cg=2xCBTL
+
CBTL
Vout
Vout
_
_
RBTL
Cg=2xCBTL
RBTL
Vout-
Vout-
LBTL
LBTL
Figure19.Type-1ADModulationFilterConvertedtoType-2
3.8LCFilterQuickSelectionGuide
ThefiltercomponentsinthefollowingtablesarebasedonaType-2filterconfigurationpreviouslyshown.
ThetableparametersareindicatorsoftheLCfilterresponsewhenselectingtheinductorandcapacitor
values.TheQgivesinsightintothedampingofthefilterandwhetherthereispeakingathighfrequency.The?0istheresonantcut-offfrequencyofthefilterandprovidesinsightonthebandwidthofthefilter.The
peakingat20-kHzisanindicatoroftheflatnessofthefilterintheaudioband.BasedonthePWM
frequencyoftheclass-Damplifieritisagoodpracticetoaccesstheamountofthecarrierfundamental
frequencythefilterattenuates.Higherattenuationhelpsminimizetheriskofcarriersignalinterference.
Table2.FilterComponents–RBTL=8?
Q?0(kHz)Peaking@
20-kHz(dB)
LBTL(μH)Cg(μF)Attenuation@
400-kHz(dB)
Attenuation@
600-kHz(dB)
0.70860–0.051150.47–33–41
0.196730.927100.47–29–37
Table3.FilterComponents–RBTL=6?
Q?0(kHz)Peaking@
20-kHz(dB)
LBTL(μH)Cg(μF)Attenuation@
400-kHz(dB)
Attenuation@
600-kHz(dB)
0.63949–0.408150.68–36–44
0.639610.122100.68–33–40
0.777880.06770.47–26–34
Table4.FilterComponents–RBTL=4?
Q?0(kHz)Peaking@
20-kHz(dB)
LBTL(μH)Cg(μF)Attenuation@
400-kHz(dB)
Attenuation@
600-kHz(dB)
0.79150–0.429101.0–36–44
0.756600.06771.0–33–40
SLAA701A–October2016–RevisedNovember2016
SubmitDocumentationFeedback
Copyright?2016,TexasInstrumentsIncorporated
LCFilterDesign
17
InductorSelectionforHigh-PerformanceClass-DAudio
4InductorSelectionforHigh-PerformanceClass-DAudio
4.1InductorLinearity
TheinductanceversuscurrentprofilefortheinductorusedintheoutputLCfilterofaclass-Damplifiercan
significantlyimpactthetotalharmonicdistortion(THD)performance.
Anidealinductormaintainsthespecifiedinductancevaluenomatterwhatcurrentpassesthroughit.
However,real-worldinductorsalwayshavedecreasinginductancewithincreasingcurrent.Atsomepoint,
thecurrentlevelsaturatestheinductorandtheinductancefallsoffseverely.ThisisoftenspecifiedasIsat.
Becauseinductorlinearityisafunctionofcurrent,inductordistortionishigherwithlower-impedanceloads.
Lsat
Current(Amps)
Figure20.TypicalInductorSaturationCurve
KeepinmindthattheinductancechangeattheIsatcurrentratingvariesbetweenmanufacturersandeven
inductortypes.SomemanufacturersspecifyIsatata30%orhigherchangeininductance.Useofthis
inductorallthewaytotheIsatratingforanLCclass-Dfilterresultsinvery
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年小學教師資格考試《綜合素質》教育創新實踐案例分析題庫(含答案詳解)
- 2025年護士執業資格考試營養護理學專項:營養護理發展趨勢試題匯編
- 2025年初中地理模擬試題:地理環境演變與生態系統穩定性
- 2025年消防安全培訓考試題庫:消防設施操作與消防通道安全管理與維護案例分析模擬試題集
- 2025年教師資格證面試結構化模擬題:小學品德與生活教學研究試題
- 寧夏財經職業技術學院《哲學分析與論文寫作》2023-2024學年第二學期期末試卷
- 吉林省長春市文曲星名校2025年高三下學期高考模擬聯考物理試題含解析
- 湖北開放職業學院《數字攝像》2023-2024學年第二學期期末試卷
- 鄭州工程技術學院《短視頻拍攝與制作實訓》2023-2024學年第二學期期末試卷
- 上海海洋大學《畜牧學基礎》2023-2024學年第二學期期末試卷
- 房地產行業未來走勢與機遇分析
- 2025年中國色度儀行業發展運行現狀及投資策略研究報告
- 2025年淄博市光明電力服務有限責任公司招聘筆試參考題庫含答案解析
- 河北省部分重點中學2024-2025學年高三下學期3月聯合測評(T8聯考)化學試題(含答案)
- 住宅老舊電梯更新改造工作指南匯報- 中國電梯協會
- 物流企業防汛演練方案與流程
- 2024年重慶聯合產權交易所集團股份有限公司招聘考試真題
- 2024年陜西省縣以下醫療衛生機構定向招聘考試真題
- 7.2做中華人文精神的弘揚者 教學設計-2024-2025學年統編版道德與法治七年級下冊
- 《三氣周瑜》兒童故事繪本ppt課件(圖文演講)
- 中國銀行業信息科技十三五發展規劃監管指導意見
評論
0/150
提交評論