D 類 LC 濾波器設計器_第1頁
D 類 LC 濾波器設計器_第2頁
D 類 LC 濾波器設計器_第3頁
D 類 LC 濾波器設計器_第4頁
D 類 LC 濾波器設計器_第5頁
已閱讀5頁,還剩49頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

ApplicationReportSLAA701A–October2016–RevisedNovember2016

LCFilterDesign

ABSTRACT

Inhigher-powerclass-Damplifiers,generallyabove10Wofoutputpower,afilterontheoutputofthe

amplifierisrequired.Thefilterispassiveinnatureandusesbothaninductorandacapacitoroneach

outputterminal.Therefore,itisreferredtoasanLCfilter.PropercomponentselectionoftheLCfilteris

criticaltomeetthedesiredaudioperformance,efficiency,EMC/EMIrequirements,andcostfortheend

application.ThisapplicationreportservesasaguidetoaidinthesectionofLCfiltercomponentsfor

class-Damplifierstomeettarget-designgoalsoftheendsystem.

Contents

1Class-DOutputConfigurations3

1.1Bridged-TiedLoad(BTL)3

1.2ParallelBridge-TiedLoad(PBTL)3

1.3Single-Ended(SE)4

2Class-DModulationSchemes5

2.1AD(Traditional)Modulation5

2.2BDModulation6

3Class-DOutputLCFilter7

3.1OutputLCFilterFrequencyResponseProperties7

3.2Class-DBTLOutputLCFilterTopologies8

3.3Single-EndedFilterCalculations9

3.4Type-1FilterAnalysis10

3.5Type-2FilterAnalysis12

3.6HybridFilterforADModulation14

3.7ADModulationWithType-1orType-2Filters17

3.8LCFilterQuickSelectionGuide17

4InductorSelectionforHigh-PerformanceClass-DAudio18

4.1InductorLinearity18

4.2RippleCurrent20

4.3MinimumInductance21

4.4CoreLoss22

4.5DCResistance(DCR)23

4.6InductorStudyWiththeTPA3251Device24

5CapacitorConsiderations28

5.1Class-DOutputVoltageOverview28

5.2CapacitorRatingsandSpecifications30

5.3CapacitorTypes35

6RelatedCollateral40

ListofFigures

1Stereo(Two-Channel)BTLClass-DAmplifier3

2MonoPBTLClass-DAmplifier4

3FourSingle-EndedOutputs4

4AD(Traditional)Modulation5

5BDModulation6

Alltrademarksarethepropertyoftheirrespectiveowners.

SLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedback

Copyright?2016,TexasInstrumentsIncorporated

LCFilterDesign

1

6EffectofQonFrequencyResponse7

7Single-EndedLCFilter9

8Type-1FilterforADModulation10

9Type-1FilterEquivalentCircuit10

10Type-1Single-EndedEquivalentCircuit1111Type-1LCFilterResponseWithC

BTL=0.68μFandLBTL=10μH1212Type-2FilterforBDorADModulation12

13Type-2FilterEquivalentCircuit13

14Type-2FilterSingle-EndedEquivalentCircuit1315Type-2LCFilterResponseWithC

g=1.5μFandLBTL=10μH1416HybridFilterforADModulation15

17HybridFilterSingle-EndedEquivalentCircuit1518HybridLCFilterResponseWithC

BTL=0.63μF,Cg=0.12μF,andLBTL=10μH1619Type-1ADModulationFilterConvertedtoType-217

20TypicalInductorSaturationCurve18

21TPA3251EVMTHD+NvsOutputPower,4Ω19

22TPA3251EVMTHD+NvsSignalFrequency,20W,4Ω19

23PVDD/2Common-ModeVoltage20

24PWMVoltageWaveform21

25InductorVoltageandCurrent21

26InductorCore-LossModel22

27TPA3251PowerDissipationWithInductorDCRPVDD=30V,600kHz,2×BTL,4Ω23

28TPA3251THD+NvsOutputPowerforVariousInductors600kHz,36V,4Ω26

29TPA3251THD+NvsFrequencyforVariousInductors20W,600kHz,36V,4Ω26

30Class-DSEFilter-ADofBDMode28

31LCFilterFrequencyResponse28

32Class-DLCFilterOutput29

33Class-DLCFilterOutputWithRipple29

34EquivalentSeriesResistance32

35DissipationFactor32

36KemetPHE426HB7100JR06Capacitor37

37VishayMMKP383Capacitor37

38ACVoltageRatinglessthan85°C37

39ACVoltageRatingbetween85°Cand105°C37

40Film-CapacitorTemperatureCoefficient38

41CeramicCapacitor%CapacitanceChangevsDCVoltage39

ListofTables

1Class-DFilterTypesandTheirSEEquivalentCircuits8

2FilterComponents–R

BTL=8?173FilterComponents–R

BTL=6?174FilterComponents–R

BTL=4?175AverageChangeinInductancefor10InductorSamples186R

P,DissipationFactor,andIdlePowerMeasuredfor10Inductors227ResultsofVariousInductors25

8RecommendedInductorsWiththeTPA32xxClass-DFamily27

9CapacitorRatingsandSpecifications30

10CapacitorTypeComparison35

11Capacitor-TypeToleranceComparison35

2LCFilterDesignSLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedbackCopyright?2016,TexasInstrumentsIncorporated

Class-DOutputConfigurations

12CapacitorReliabilityParameterComparison36

13Film-CapacitorKeyParameters36

14ParameterandDescriptionsforSelectingMetalizedFilmCapacitors38

15RemainingCodeOptions40

1Class-DOutputConfigurations

SomeTIclass-Daudioamplifierssupportmultipleoutputconfigurationsinasingledevice.Thisallowsfor

ahighlevelofflexibilityfortheendapplication.

1.1Bridged-TiedLoad(BTL)

Bridge-tiedload(BTL)isthemostcommonoutputconfigurationforaclass-Damplifier.ABTL

configurationconsistsofoneamplifierdrivingonesideofaloadandanotheramplifier,withaninverted

signalfromthefirstamplifier,drivingtheothersideoftheload.Thisresultsin2×morevoltageswing

acrosstheloadforagivensupplyvoltagewhencomparedtoasingle-endedconfigurationwhereoneside

oftheloadistiedtotheamplifieroutputandtheothersidetoground.Twicethevoltageswingacrossthe

loadequatestoa4×powerincreasebecauseP=V2/R.So,aBTLloadconfigurationoffers4×more

powertotheloadthanasingle-endedconfigurationfromthesamesupplyvoltage.

Becauseeachsideoftheloadisdriven,theloadisnotground-referenced.Therefore,thevoltageacross

theloadmustbemeasureddifferentiallyrelativetoground.

OutA

OutB

Class-D

Amplifier

OutC

OutD

Figure1.Stereo(Two-Channel)BTLClass-DAmplifier

1.2ParallelBridge-TiedLoad(PBTL)

Parallelbridged-tiedload(PBTL)isanoutputconfigurationthattakesastereoBTLamplifierandconnects

theoutputsinparallelforasinglemonochannel.Althoughthemaximumoutputvoltageswingisthesame

foraBTLoutputconfiguration,themaximumcurrenthasbeenincreasedbecauseeachoutputsharesthe

loadcurrent.Thisoftenallowsforlower-impedanceloadstobedrivenwithhigheroutputpowerwhen

comparedtoBTLwiththesamesupplyvoltage.TheamplifiercurrentlimithasdoubledcomparedtoBTL.

SLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedback

Copyright?2016,TexasInstrumentsIncorporated

LCFilterDesign

3

Class-DOutputConfigurations

OutA

OutB

Class-D

Amplifier

OutC

OutD

Figure2.MonoPBTLClass-DAmplifier

1.3Single-Ended(SE)

Inasingle-ended(SE)configuration,onlyoneoutputisusedtodrivetheloadratherthanapairofoutputs

operatingoutofphase,asfoundinBTLandPBTLconfigurations.Forthisreason,onlyhalfoftheSignal

swingisavailablecomparedtoBTLoraquarterofthetotaloutputpower.Howeverthisconfigurationcan

allowforfourchannelswithasinglestereoBTLamplifierasshowninFigure3.Someamplifiersalsoallow

acombinationof1×BTLand2×SEchannelsforsupportof2.1audiosystemswithasingledevice.

DuetothePWMmodulationofaclass-Damplifier,aDCvoltageofPVDD/2orhalfofthesupplyvoltage

ispresentaftertheLCfilter.InSEmode,becausethespeakerisnowground-referenced,eitheraDC

blockingcapacitororsomeothermeansofreferencingthespeakertoPVDD/2isnecessarysothatno

DCvoltageappearsacrossthespeaker.

OutA

OutB

Class-D

Amplifier

OutC

OutD

Figure3.FourSingle-EndedOutputs

4LCFilterDesignSLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedbackCopyright?2016,TexasInstrumentsIncorporated

Class-DModulationSchemes

2Class-DModulationSchemes

ThissectiondescribeshowanalogsignalsareconvertedtoPWMsignalstodrivetheMOSFETsinthe

outputbridge.Mostclass-Damplifierscanbeclassifiedasusingoneoftwomodulationtechniques,AD

(traditional)orBDmodulation.

2.1AD(Traditional)Modulation

Thetraditionalswitchingtechnique(ADmodulation)modulatesthedutycycleofarectangularwaveform,

suchthatitsaveragecontentcorrespondstotheinputanalogsignal.TheBTLoutputs(seeFigure4)are

theinverseofeachother.ADmodulationhasnosignificantcommon-modeswitchingcontentinitsoutput.

However,thereisacommon-modeDCvoltageduetotheaveragevalueofthePWMswitching.Because

bothsidesoftheloadseethisDCvoltagelevel,itdoesnotcontributetopowerdissipationacrossthe

load.ThisDCvoltageisequaltoPVDD/2,orhalfofthesupplyvoltage.TheTPA312xD2familyemploys

ADmodulation.AllTASmodulatorscanbeconfiguredforADmodulation.

Figure4.AD(Traditional)Modulation

Becausetheswitchingwaveformisnearlyentirelydifferential,aBTL-connectedloadacrosstheA-legand

B-legseesthefullswitchingwaveform.Atidle,theamplifierswitchesatthenominalPWMfrequencywith

a50%dutycycleacrosstheload.Thiscausessignificantcurrentflowandpowerdissipationintotheload.

AnLCfilterisnecessarytoreducethecurrenttoasmallresidualrippleforgoodefficiency.

Generally,thelowertheripplecurrentforanADmodulationclass-Damplifier,thebettertheefficiencydue

toreducedloaddissipationandreducedI2RlossacrossRDS(on)oftheoutputFETs.

SLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedback

Copyright?2016,TexasInstrumentsIncorporated

LCFilterDesign

5

Class-DModulationSchemes

2.2BDModulation

TheBDmodulationswitchingtechniquemodulatesthedutycycleofthedifferenceoftheoutputsignals

suchthatitsaveragecontentcorrespondstotheinputanalogsignal.TheBTLoutputs(seeFigure5)are

nottheinverseofeachother.BDmodulationhassignificantcommon-modecontentinitsoutput.Some

TASmodulatorscanbealsobeconfiguredforBDmodulation.

Figure5.BDModulation

6LCFilterDesignSLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedbackCopyright?2016,TexasInstrumentsIncorporated

Class-DOutputLCFilter

3Class-DOutputLCFilter

3.1OutputLCFilterFrequencyResponseProperties

Thefrequencyresponseofthesecond-orderclass-DLCoutputfilteriscriticalwhenselectingthe

componentvaluesfortheinductorandcapacitor.TheLCfilterresponsealsovarieswithspeakerload

impedance.TheloadimpedancedeterminesthedampingratiooftheoutputLCfilterandisclassifiedas

overdamped,criticallydamped,orunderdamped.Itisalsoimportanttounderstandthespeakerload

impedancevariationsfortheapplicationandselecttheLandCvaluesthatsuittheexpectedload

variations.Ideally,theLCfiltervalueisselectedforacriticallydamped,flatpassband,andphase

response.Twoconsiderationswhenselectingcomponentsforthesecond-orderlow-passfilteristhecut-

offfrequencyandQfactorordampingratio.

Figure6.EffectofQonFrequencyResponse

TIrecommendsusingasecond-orderButterworthlow-passfilterbecauseofitsflatpass-bandandphase

response.TIdoesnotrecommendtheuseofLCfiltersthatpeakexcessively,liketheunderdampedfilter

responseshowninFigure6.Athighfrequency,thepeaksaregenerallyharshtothehumanearandcan

alsotriggertheprotectioncircuitry,suchasovercurrent,ofsomeamplifiers.However,overdampedfilters

resultinattenuationofhigh-frequencyaudiocontentintheaudioband.

SLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedback

Copyright?2016,TexasInstrumentsIncorporated

LCFilterDesign

7

Class-DOutputLCFilter

3.2Class-DBTLOutputLCFilterTopologies

Forclass-Damplifiers,thereareprimarilytwofiltertypesuseddependingonthemodulationscheme.The

Type-1filterisadifferentialfilterusedforADmodulationamplifiersonly.TheType-2filterisacommon-

modefilterprimarilyusedforBDmodulation.

Table1showseachfiltertypeandtheassociatedsingle-endedequivalentthatisusedlaterinthissection

forfrequencyresponseanddampinganalysis.Thesingle-endedequivalentisusedtomakethe

computationsforeachfiltertypeeasier.

Table1.Class-DFilterTypesandTheirSEEquivalentCircuits

Class-DBTLFilterTypes

Type-1Type-2Hybrid

LBTL

LBTL

LBTL

Vout+

Vout+

Vout+

Cg

Cg

CBTL

CBTL

RBTL

RBTL

RBTL

Vout-

Vout-

Vout-

Cg

Cg

LBTL

LBTL

LBTL

Type-1Single-EndedEquivalentType-2Single-EndedEquivalentHybridSingle-EndedEquivalent

LBTL

LBTL

LBTL

++

++

+

+

Vin

C=2xCBTLRL=

RBTL/2

Vout

VinC=Cg

RL=Vout

Vin

RBTL/2C=2xCBTL+Cg

RL=

RBTL/2

Vout

__

__

_

_

Class-D

Modulation:AD

Class-D

Modulation:

BDorAD

(seeSection3.7)

Class-D

Modulation:AD

FilterType:DifferentialFilterType:CommonModeFilterType:Hybrid

CBTL=Differentialbridgedtiedloadcapacitor

Cg=Single-endedcapacitortoground

RBTL=Differentialloadimpedance

LBTL=Seriesinductor

8LCFilterDesignSLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedbackCopyright?2016,TexasInstrumentsIncorporated

Class-DOutputLCFilter

3.3Single-EndedFilterCalculations

Sincethegoalistousethesingle-endedequivalentofeachfiltertypeforeasyanalysis,thefrequency

responseofthesingle-endedfiltermustbeknown.

L

+

+

Vin

CRLVout

_

_

Figure7.Single-EndedLCFilter

Theequationsforthesingle-endedLCfiltershowninFigure7follow:

f

0

1

w

0

==-

CutofffrequencyofsingleendedLCfilter

22LC

pp′

(1)

w0=2pf0Conversionbetweenradiansandfrequencyinhertz

(2)

C

QRQualityFactorQ

=

L

L

(3)

11

z==

2Q

2′R

L

C

L

DampingRatio

(4)

Aspreviouslymentioned,itisusuallydesirabletodesignafilterthatiscriticallydampedwithaButterworth

response.Forthistypeoffilter,Q=0.707=1/√2.BysubstitutingQ=1/√2intoequationsforCut-off

FrequencyandQualityFactorpreviouslylisted,LandCvaluescanbederivedforacriticallydamped

systemassumingthedesiredcut-offfrequency,ωo,isknown.

R2

L

LInductorvalueforcriticallydampedButterworthfilter

=

w

0

(5)

1

CCapacitorvalueforcriticallydampedButterworthfilter

=

w′′

R2

0L

(6)

SLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedback

Copyright?2016,TexasInstrumentsIncorporated

LCFilterDesign

9

Class-DOutputLCFilter

3.4Type-1FilterAnalysis

TheType-1filterisadifferentialfilterdesignedforADmodulationclass-Damplifiers.ADmodulationhas

nosignificantcommon-modecontentonitsoutputs,thusonlythedifferentialmodeisneededforanalysis.ThedifferentialBTLcomponents,CBTLandRBTLoftheADmodulationLCfiltershowninFigure8,canbe

simplifiedtoasingle-endedequivalent.

LBTL

Vout+

+

CBTL

Vout

_

RBTL

Vout-

LBTL

Figure8.Type-1FilterforADModulation

Frominspection,theType-1filtercanbesplitintoanequivalentcommon-modefilterasshowninFigure9.

CBTLmustbescaledbyafactorof2sinceinthecommon-modemodel,thecapacitorsappearinseries.

LBTL

Vout+

+

2xCBTL

Vout

_

RBTL/2

+

2xCBTL

Vout

_

Vout-

RBTL/2

LBTL

Figure9.Type-1FilterEquivalentCircuit

10LCFilterDesignSLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedbackCopyright?2016,TexasInstrumentsIncorporated

Class-DOutputLCFilter

Nowthesingle-endedequivalentcanbedrawnasshowninFigure10.Thedifferencebetweentheoriginalfilterandsingle-endedequivalentisthatCBTLhasbeenmultipliedbyafactoroftwoandRBTLhasbeen

dividedbyafactoroftwo.

Whenusingthesingle-endedequivalentcircuittofindthefiltercomponentvalues,CBTL=C/2.

LBTL

+

+

Vin

C=2xCBTLRL=

RBTL/2

Vout

_

_

Figure10.Type-1Single-EndedEquivalentCircuit

3.4.1Type-1FrequencyResponseExample

UsingtheequationsoutlinedinSection3.3,afilterisdesignedwithatargeted40-kHzbandwidthand4-?speakerload.

TheLandCvaluescanbecalculatedasfollows:

R

R′2

BTL

L

L=whereR=,R=4W,w=2pf,andf=

LBTL000

w2

0

R

BTL

′2

22

2

L===11.25mH

2pf2p′40000

0

40kHz

Theneareststandardinductorvalueis10μH.

L=L=10mH

BTL

R1

BTL

C=whereR=,R=4W,w=2pf,andf=40kHz

LBTL000

w′R′2

2

0L

111

C====1.4mF

R2400002

w′R′2p′′2

BTL

0f2

L

0

2p′′

2

C

C==0.70mF?0.68mF

BTL

2

Thestandardcapacitorvalueis0.68μF.

Usingthestandardinductorandcapacitorvaluesfromthepreviouscalculations,theQfactorfor4?is:

R2C-

′′

6

C1.3610

BTLBTL

QR20.737

====

L6

L2L1010

-

BTL

(7)

WiththetargetedQof1/√2≈0.707andthecut-offfrequencyis:

f

0

111

====

2LC2L2C2(1010)(1.3610)

p′p′′

--66

66

--

BTLBTLp′′′

43156Hz

Thepeakingatcut-offfrequencyindBis:

Peaking(w)=20logQ=-2.65dB

010

SLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedback

Copyright?2016,TexasInstrumentsIncorporated

LCFilterDesign

11

Class-DOutputLCFilter

Usingthetransferfunction(Equation8),thefrequencyresponseoftheselectedLCfiltercanbeplottedfor

differentspeakerloadstoprovideacompletevisualevaluationoftheLCfilterresponsewithvarious

speakerloads.

H(s)

Diff

V(s)1

OUT

==

V(s)

L

INBTL2

1s2Cs

+′′′+

BTL

R

BTL

2

(8)

20

10

0

-10

-20

2:-303:

4:6:8:

-40

101001k10k100k1M

Frequency(Hz)

D001

Figure11.Type-1LCFilterResponseWithCBTL=0.68μFandLBTL=10μH

3.5Type-2FilterAnalysis

TheType-2class-Dfilterisacommon-modefilterdesignedforBDorADmodulationamplifiers.Sincethe

Type-2filteriscommonmode,itcanbeeasilyconvertedintoitsequivalentsingle-endedform.Thecommon-modeBTLcomponentsCganddifferentialloadRBTLoftheLCfiltershowninFigure12,canbe

simplifiedtoasingle-endedequivalent.

LBTL

Vout+

+

Cg

Vout

RBTL_

Vout-

Cg

LBTL

Figure12.Type-2FilterforBDorADModulation

12LCFilterDesignSLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedbackCopyright?2016,TexasInstrumentsIncorporated

Class-DOutputLCFilter

Frominspection,theType-2filtercanbesplitintoanequivalentcommon-modefilterasshownin

Figure13.

LBTL

Vout+

+

Cg

Vout

_

RBTL/2

+

Cg

Vout

_Vout-RBTL/2

LBTL

Figure13.Type-2FilterEquivalentCircuit

Nowthesingle-endedequivalentcanbedrawn.Theonlydifferenceforsingle-endedanalysisisthatRBTL

hasbeendividedbyafactoroftwo.

LBTL

+

+

VinC=Cg

RL=

RBTL/2

Vout

_

_

Figure14.Type-2FilterSingle-EndedEquivalentCircuit

3.5.1Type-2FrequencyResponseExample

UsingtheequationsoutlinedinSection3.3,afilterisdesignedwithatargeted40-kHzbandwidthand4-?speakerload.

R

R′2

BTL

L

L=whereR=,R=4W,w=2pf,andf=

LBTL000

w2

0

R

BTL

′2

22

2

L===11.25mH

2pf2p′40000

0

40kHz

Theneareststandardinductorvalueis10μH.

L=L=10mH

BTL

R1

BTL

C=whereR=,R=4W,w=2pf,andf=40kHz

LBTL000

w′R′2

2

0L

111

C====1.4mF

R2400002

w′R′2p′′2

02f′2

LBTL

p′

0

2

C=C=1.4mF?1.5mF

g

Thestandardcapacitorvalueis1.5μF.

SLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedback

Copyright?2016,TexasInstrumentsIncorporated

LCFilterDesign

13

Class-DOutputLCFilter

Usingthestandardinductorandcapacitorvaluesfromthepreviouscalculations,theQfactorfor4?is:

RC

-

6

C1.510

BTLg′

QR20.775

====

L6

L2L1010-

BTL

WiththetargetedQof1/√2≈0.707andthecut-offfrequencyis:

f

0

111

====

2LC2LC2(10106)(1.5106)

p′p′

--

BTLg

p′′′

41093Hz

Thepeakingatthecut-offfrequencyindBis:

Peaking(w)=20logQ=-2.22dB

010

UsingthetransferfunctionbelowthefrequencyresponseoftheselectedLCfiltercanbeplottedfor

differentspeakerloadstoprovideacompletevisualevaluationoftheLCfilterresponsewithvarious

speakerloads.

H(s)

Diff

V(s)1

OUT

==

V(s)

L

INBTL2

1sLCs

+′+′+

BTLg

R

BTL

2

(9)

20

10

0

-10

-20

2:-303:

4:6:8:

-40

101001k10k100k1M

Frequency(Hz)

D002

Figure15.Type-2LCFilterResponseWithCg=1.5μFandLBTL=10μH

3.6HybridFilterforADModulation

Forsomeapplications,itmaybebeneficialtouseahybridfiltercombiningtheType-1andType-2filtersforanADmodulationamplifier.ByaddingCgtotheType-1filter,thehigh-frequencydecouplingtoground

isimproved,sincetheamplifierADPWMmodulationisneverperfectlydifferential.ForthisconfigurationTIrecommendsCg=0.1×CBTL.

14LCFilterDesignSLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedbackCopyright?2016,TexasInstrumentsIncorporated

Class-DOutputLCFilter

LBTL

Vout+

+

Cg

CBTL

Vout

RBTL

_

Vout-

Cg

LBTL

Figure16.HybridFilterforADModulation

FromthepreviousstudyoftheType-1andType-2filters,theHybridFiltersingle-endedequivalentcanbe

easilydrawn.

+

+

Vin

C=2xCBTL+Cg

RL=

RBTL/2

Vout

_

_

Figure17.HybridFilterSingle-EndedEquivalentCircuit

3.6.1HybridFilterFrequencyResponseExample

UsingtheequationsoutlinedinSection3.3,afilterisdesignedwithatargeted40-kHzbandwidthand4-?speakerload.

R

R′2

BTL

L

L=whereR=,R=4W,w=2pf,andf=

LBTL000

w2

0

R

BTL

′2

22

2

L===11.25mH

2pf2p′40000

0

40kHz

Theneareststandardinductorvalueis10μH.

SLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedback

Copyright?2016,TexasInstrumentsIncorporated

LCFilterDesign

15

Class-DOutputLCFilter

L=L=10mH

BTL

R1

BTL

C=whereR=,R=4W,w=2pf,andf=40kHz

LBTL000

w′R′2

0L

111

C====1.4mF

R2400002w′p′′

R′222

BTL

0

0

L2

pf′′

2

C=2′C+CwhereC

BTLgg

?

2′C

BTL

10

2′C

BTL

C=2′C+=1.4mF

BTL

10

C2′C

BTL

C==0.63mFandC==0.12mF

BTLg

2.210

Thestandardcapacitorvaluesare0.63μFand0.12μF.

Usingthestandardinductorandcapacitorvaluesfromthepreviouscalculations,theQfactorfor4?is:

R2.2C-

6

C′1.38′10

BTLBTL

QR20.743

L2L1010-

====

L6

BTL

WiththetargetedQof1/√2≈0.707andthecut-offfrequencyis:

f

0

111

====

2LC2L2.2C2(1010)(1.3810)

p′p′′

66

--

BTLBTL

p′′′

42843Hz

Thepeakingatthecut-offfrequencyindBis:

Peaking(w)=20logQ=-2.58dB

010

UsingthetransferfunctionbelowthefrequencyresponseoftheselectedLCfiltercanbeplottedfor

differentspeakerloadstoprovideacompletevisualevaluationoftheLCfilterresponsewithvarious

speakerloads.

V(s)1

OUT

H(s)==

Diff

V(s)

L

IN

BTL2

1sL2CCs

+′+′′++

BTLBTLg

R

BTL

2

(10)

20

10

0

-10

-20

2:-303:

4:6:8:

-40

101001k10k100k1M

Frequency(Hz)

D003

Figure18.HybridLCFilterResponseWithCBTL=0.63μF,Cg=0.12μF,andLBTL=10μH

16LCFilterDesignSLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedbackCopyright?2016,TexasInstrumentsIncorporated

Class-DOutputLCFilter

3.7ADModulationWithType-1orType-2Filters

SincetheCgcapacitorsontheType-2filtershareacommonnodethroughground,differentialsignalswill

seeacapacitancevalueofCg/2sincethecapacitorsappearinseriesfordifferentialsignalsonly.

Therefore,withproperselectionoftheCgcapacitancevalue,theType-2canalsobeusedforAD

modulationclass-Damplifierswhichrequireadifferentialfilter.ConversionfromType-1toType-2onlyrequiresscalingofCBTLbyafactorof2.Thatis,Cg=2xCBTLforidenticalfiltercut-offfrequencyand

dampingfactor.

LBTL

Vout+

+

Vout+

Cg=2xCBTL

+

CBTL

Vout

Vout

_

_

RBTL

Cg=2xCBTL

RBTL

Vout-

Vout-

LBTL

LBTL

Figure19.Type-1ADModulationFilterConvertedtoType-2

3.8LCFilterQuickSelectionGuide

ThefiltercomponentsinthefollowingtablesarebasedonaType-2filterconfigurationpreviouslyshown.

ThetableparametersareindicatorsoftheLCfilterresponsewhenselectingtheinductorandcapacitor

values.TheQgivesinsightintothedampingofthefilterandwhetherthereispeakingathighfrequency.The?0istheresonantcut-offfrequencyofthefilterandprovidesinsightonthebandwidthofthefilter.The

peakingat20-kHzisanindicatoroftheflatnessofthefilterintheaudioband.BasedonthePWM

frequencyoftheclass-Damplifieritisagoodpracticetoaccesstheamountofthecarrierfundamental

frequencythefilterattenuates.Higherattenuationhelpsminimizetheriskofcarriersignalinterference.

Table2.FilterComponents–RBTL=8?

Q?0(kHz)Peaking@

20-kHz(dB)

LBTL(μH)Cg(μF)Attenuation@

400-kHz(dB)

Attenuation@

600-kHz(dB)

0.70860–0.051150.47–33–41

0.196730.927100.47–29–37

Table3.FilterComponents–RBTL=6?

Q?0(kHz)Peaking@

20-kHz(dB)

LBTL(μH)Cg(μF)Attenuation@

400-kHz(dB)

Attenuation@

600-kHz(dB)

0.63949–0.408150.68–36–44

0.639610.122100.68–33–40

0.777880.06770.47–26–34

Table4.FilterComponents–RBTL=4?

Q?0(kHz)Peaking@

20-kHz(dB)

LBTL(μH)Cg(μF)Attenuation@

400-kHz(dB)

Attenuation@

600-kHz(dB)

0.79150–0.429101.0–36–44

0.756600.06771.0–33–40

SLAA701A–October2016–RevisedNovember2016

SubmitDocumentationFeedback

Copyright?2016,TexasInstrumentsIncorporated

LCFilterDesign

17

InductorSelectionforHigh-PerformanceClass-DAudio

4InductorSelectionforHigh-PerformanceClass-DAudio

4.1InductorLinearity

TheinductanceversuscurrentprofilefortheinductorusedintheoutputLCfilterofaclass-Damplifiercan

significantlyimpactthetotalharmonicdistortion(THD)performance.

Anidealinductormaintainsthespecifiedinductancevaluenomatterwhatcurrentpassesthroughit.

However,real-worldinductorsalwayshavedecreasinginductancewithincreasingcurrent.Atsomepoint,

thecurrentlevelsaturatestheinductorandtheinductancefallsoffseverely.ThisisoftenspecifiedasIsat.

Becauseinductorlinearityisafunctionofcurrent,inductordistortionishigherwithlower-impedanceloads.

Lsat

Current(Amps)

Figure20.TypicalInductorSaturationCurve

KeepinmindthattheinductancechangeattheIsatcurrentratingvariesbetweenmanufacturersandeven

inductortypes.SomemanufacturersspecifyIsatata30%orhigherchangeininductance.Useofthis

inductorallthewaytotheIsatratingforanLCclass-Dfilterresultsinvery

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論