反比例函數(shù)(壓軸專(zhuān)練)(六大題型)解析版-2024-2025學(xué)年北師大版九年級(jí)數(shù)學(xué)上冊(cè)_第1頁(yè)
反比例函數(shù)(壓軸專(zhuān)練)(六大題型)解析版-2024-2025學(xué)年北師大版九年級(jí)數(shù)學(xué)上冊(cè)_第2頁(yè)
反比例函數(shù)(壓軸專(zhuān)練)(六大題型)解析版-2024-2025學(xué)年北師大版九年級(jí)數(shù)學(xué)上冊(cè)_第3頁(yè)
反比例函數(shù)(壓軸專(zhuān)練)(六大題型)解析版-2024-2025學(xué)年北師大版九年級(jí)數(shù)學(xué)上冊(cè)_第4頁(yè)
反比例函數(shù)(壓軸專(zhuān)練)(六大題型)解析版-2024-2025學(xué)年北師大版九年級(jí)數(shù)學(xué)上冊(cè)_第5頁(yè)
已閱讀5頁(yè),還剩51頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

反比例函數(shù)壓軸專(zhuān)練(六大題型)

題型1:存在性問(wèn)題

1.如圖,直線y=|x與雙曲線>=£(左HO)交于/,8兩點(diǎn),點(diǎn)/的坐標(biāo)為(九-3),點(diǎn)c是雙曲線第一象

限分支上的一點(diǎn),連接3c并延長(zhǎng)交X軸于點(diǎn)。,且8c=2CD.

⑴求左的值并直接寫(xiě)出點(diǎn)8的坐標(biāo);

⑵點(diǎn)用、N是了軸上的動(dòng)點(diǎn)(M在N上方)且滿足比乂=1,連接MB,NC,求+九W+NC的最小值;

(3)點(diǎn)尸是雙曲線上一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)P,使得NODP=NDOB,若存在,請(qǐng)直接寫(xiě)出所有符合條件的P

點(diǎn)的橫坐標(biāo).

【答案】⑴左=6,5(2,3);

(2)1+765;

(3)點(diǎn)P的橫坐標(biāo)為:4-2^5,4+273,4-273

【分析】本題考查了一次函數(shù)與反比例函數(shù)交點(diǎn)問(wèn)題,相似三角形的性質(zhì)與判定;

(1)運(yùn)用一次函數(shù)與反比例函數(shù)的交點(diǎn)坐標(biāo)即可求解;

(2)根據(jù)BC=2CD,求得點(diǎn)C的坐標(biāo),再把將軍飲馬模型在坐標(biāo)系中直接運(yùn)用,根據(jù)勾股定理求解即可;

(3)根據(jù)題意畫(huà)圖分析,根據(jù)平行求相關(guān)函數(shù)關(guān)系式,再求兩條線的交點(diǎn)解方程組,即可得解.

【解析】(1)解:根據(jù)題意可知點(diǎn)4冽,-3)在直線y=a和雙曲線歹=k?左W0)的圖象上,

3

-m=-3,角星得m=-2,

:.點(diǎn)A的坐標(biāo)為(-2,-3),代入雙曲線歹=勺后/0)得:

k=(-2)x(-3)=6,

由圖象可知點(diǎn)5與點(diǎn)A關(guān)于原點(diǎn)對(duì)稱(chēng),

???3(2,3);

(2)過(guò)點(diǎn)8、C分別作%軸的垂線,垂足分別為E、F,作點(diǎn)B關(guān)于V軸的對(duì)稱(chēng)點(diǎn)點(diǎn)?,并向下平移一個(gè)

單位記為5〃,連接5〃。,

則5E〃CF,BE〃=L

:ADCFS^DBE,

.CFDC

?:BC=2CD,5(2,3),*(—2,3),B”(-2,2),

DC1clc

??=—,BE=3,

DB3

:,CF=\,即點(diǎn)。的縱坐標(biāo)為1,

???點(diǎn)c在反比例函數(shù)y=9的圖象上,

X

???C(6,1),B"C=^(2-1)2+[6-(-2)]2=J1+64=病,

.?.MB+MN+NC的最小值即為8皮+丁。=1+而;

(3)當(dāng)/0D尸=4003時(shí),當(dāng)。尸在x軸下方時(shí),DP//AB,

設(shè)直線BC的解析式為y=kxx+b,

由(2)可知:5(2,3),C(6,l),

2左+6=3k=-

解得?}2

6k+b=\

xb=4

y=—x+4,

2

當(dāng)y=0時(shí),一gx+4=0,解得x=8,

3

DP//AB,直線力B的解析式為y=

3

???設(shè)直線DE的解析式為y=-x+n,

把。(8,0)代入得:12+〃=0,

n=—12,

y——x—12,

2

由尸是直線DE與反比例函數(shù)的交點(diǎn)可得:

3-

y=-x-12

v2解得石=4+2行,X2=4-2A/5,

y=-

lx

此時(shí)點(diǎn)尸在第三象限,西=4+2右不符合題意,

當(dāng)。尸在x軸上方時(shí),則與下方的D尸關(guān)于x軸對(duì)稱(chēng),

3

可得直線DP的解析式為:y=--x+12,

3

y=——x+12

聯(lián)立/得士=4+2#,x=4-2-s/3,

62

y=-

X

此時(shí)點(diǎn)尸在第一象限,兩個(gè)都符合題意,

,點(diǎn)尸的橫坐標(biāo)為:4-2百4+2后,4-.

1k

2.如圖,在平面直角坐標(biāo)系中,一次函數(shù)>=-5》+3與反比例函數(shù)y=((x>0)的圖象交于點(diǎn)工(。,2),

8(4力)兩點(diǎn).

(1)求反比例函數(shù)的表達(dá)式;

(2)點(diǎn)C是第一象限內(nèi)一點(diǎn),連接4C,8C,使/C〃龍軸,8C〃y軸,連接CM,OB.若點(diǎn)尸在V軸上,

且AOPA的面積與四邊形OACB的面積相等,求點(diǎn)P的坐標(biāo);

(3)在直線08上有一動(dòng)點(diǎn)M,過(guò)M點(diǎn)做y軸的平行線交反比例函數(shù)于點(diǎn)N,當(dāng)以M、N、B、。四個(gè)點(diǎn)為頂

點(diǎn)的四邊形是平行四邊形時(shí),求N點(diǎn)坐標(biāo);

(4)在平面內(nèi)是否存在兩點(diǎn)〃、0,使得四邊形是矩形,且該矩形面積為15?若存在,請(qǐng)直接寫(xiě)出〃

點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

4

【答案】(1)?=—(x>0)

x

(2)(0,4)或(0,-4)

(4)存在,〃(7,7)或。,-5)

【分析】(1)根據(jù)點(diǎn)4。,2),5(4,6)在一次函數(shù)了=-3》+3的圖象上求出。、6的值,得出A、B兩點(diǎn)的

坐標(biāo),再運(yùn)用待定系數(shù)法解答即可;

(2)延長(zhǎng)C/交V軸于點(diǎn)E,延長(zhǎng)CB交x軸于點(diǎn)尸,構(gòu)建矩形OECF,根據(jù)

S四邊形WCfi=S矩形OECF-S^OAE~S^OBF,設(shè)點(diǎn)尸(0,⑼,根據(jù)反比例函數(shù)的幾何意義解答即可;

(3)先求出直線的函數(shù)關(guān)系式為y="x,設(shè)再分為當(dāng)點(diǎn)M在線段。8延長(zhǎng)線上時(shí)及當(dāng)點(diǎn)M

在線段上時(shí),兩種情況進(jìn)行分類(lèi)討論求解即可;

(4)分為當(dāng)點(diǎn)打在直線N3的上方時(shí)及當(dāng)點(diǎn)8在直線的下方時(shí),兩種情況分類(lèi)討論求解即可.

【解析】(1)解:.??點(diǎn)4%2),僅4,6)在一次函數(shù)歹=-3》+3的圖象上,

—a+3=2,b=—x4+3,

22

..〃=2,Z?—1,

???點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)§的坐標(biāo)為(4,1),

又?.?點(diǎn)/(2,2)在反比例函數(shù)y=±的圖象上,

X

「"=2x2=4,

4

???反比例函數(shù)的表達(dá)式為>=-(x>0);

x

(2)解:延長(zhǎng)。1交V軸于點(diǎn)石,延長(zhǎng)。5交x軸于點(diǎn)廠,

???4C〃x軸軸,

則有軸,(/,工軸,點(diǎn)。的坐標(biāo)為(4,2)

二?四邊形OECF為矩形,且C£=4,C尸=2,

一S四邊形0/C3=S矩形0反尸—S^OAE-S^OBF

=2x4——x2x2——x4xl

22

=4,

設(shè)點(diǎn)P的坐標(biāo)為(0,m),

則S0p=gx2?|加|=4,

m=±4,

二點(diǎn)尸的坐標(biāo)為(0,4)或(0,T).

(3)解:設(shè)直線。2的函數(shù)關(guān)系式為〉=。丫,

??,點(diǎn)3的坐標(biāo)為(4,1),

?.4P=1,

1

???直線的函數(shù)關(guān)系式為N=Jx,

4

設(shè)""1'q']

如圖,當(dāng)點(diǎn)M在線段08延長(zhǎng)線上時(shí),

???以M、N、B、C四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,

MN〃BC且MN=BC,

由可得N”,4

???點(diǎn)。的坐標(biāo)為(4,2),點(diǎn)8的坐標(biāo)為(4,1),

:.MN=BC=\,

141

-t—=I,

4t

解得:/=26+2或/=-26+2(舍去),

當(dāng)點(diǎn)M在線段05上時(shí),

4I,

------1=I,

t4

解得:”2百-2或/=-2百-2(舍去),

(4)解:存在,

如圖,當(dāng)點(diǎn)H在直線的上方時(shí),

過(guò)點(diǎn)〃作交的延長(zhǎng)線于點(diǎn)凡

???點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)3的坐標(biāo)為(4,1),

AB=V22+l2=V5,

?.?矩形45"。面積為15,

:.AB?BH=15,即63"=15,

:.BH=3下,

?.?四邊形Z8H0是矩形,

:"ABH=ZACB=NBRH=90°,

ZCAB+ZABC=90°,ZABC+ZRBH=90°,

NCAB=ZRBH,

:ACABS^RBH,

ACBCAB

BR~RH~BH

2_1_V5

贏―麗—亞

:.BR=6,RH=3,

.?.“(7,7);

當(dāng)點(diǎn)、H在直線AB的下方時(shí),

則點(diǎn)H與點(diǎn)(7,7)關(guān)于點(diǎn)3對(duì)稱(chēng),

設(shè)加,〃),

m+7,〃+7

-------=4,-------1,

22

:.m=\,n--5,

綜上所述,〃(7,7)或(1,-5).

【點(diǎn)睛】此題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題及與幾何結(jié)合問(wèn)題,涉及的知識(shí)有:直線與坐標(biāo)軸

的交點(diǎn),待定系數(shù)法求函數(shù)解析式,平行四邊形的性質(zhì),矩形的性質(zhì)與判定及相似三角形的判定與性質(zhì),

作出恰當(dāng)?shù)妮o助線是解本題的關(guān)鍵.

3.如圖,一條直線與反比例函數(shù)〉=:的圖象交于4(1,4)、3(4,”)兩點(diǎn),與x軸交于。點(diǎn),軸,

(2)如圖乙,若點(diǎn)E在線段4。上運(yùn)動(dòng),連接CE,作/CE尸=45。,EF交4c于F點(diǎn).

①試說(shuō)明ZXCDES^EAF;

②當(dāng)△ECF為等腰三角形時(shí),直接寫(xiě)出尸點(diǎn)坐標(biāo).

【答案】⑴①了二:,②〃=1,。(5,0)

⑵①見(jiàn)解析;②。,2)或(1,4)或(1,8-4夜)

【分析】(1)①把/的坐標(biāo)代入反比例函數(shù)的解析式,即可求得函數(shù)的解析式,②根據(jù)反比例函數(shù)的解析

式,求得8的坐標(biāo),即可得到〃的值,然后利用待定系數(shù)法即可求得直線的解析式,進(jìn)而求得與x軸的

交點(diǎn)。的坐標(biāo);

(2)①根據(jù)題意易證A/CD是等腰直角三角形,利用兩角對(duì)應(yīng)相等的兩個(gè)三角形相似即可證得;②分

。/=位,即=/。,即=以三種情況,利用等腰三角形的性質(zhì),即可求得CF的長(zhǎng),則尸的坐標(biāo)可以求得.

【解析】(1)解:①把/(1,4)代入y得:4=1,

解得:k=4,

4

則反比例函數(shù)解析式是:>=—;

44

②把%=4代入歹=一得:〃=:=1,

x4

.*.5(4,1),

設(shè)直線48的解析式為v=,

把4(1,4)、8(4,1)代入>=凡+*得:I=4《+6'

[k'=—\

解得:入<,

[b=5

則直線N3的解析式是:y=-x+5,

令V=0,解得:x=5,

則。的坐標(biāo)是:0(5,0);

(2)解:①???/(l,4),O(5,0),/C,x軸,

CD=AC=4,

9:ACLCD,

工NCAD=NCDA=45。,

又?;/FEC=45。,

:.ZAFE=ZACE+ZFEC=ZACE+45°,/DEC=/ACE+ACAD=ZACE+45°,

???ZAFE=/DEC,

:./\CDEs△區(qū)4尸,

②???△EC廠為等腰三角形分三種情況.如圖乙:

圖乙

當(dāng)CF=CE時(shí),ZCEF=ZCFE=45°,

又,:ZCAB=45°,

???4,尸重合,則尸的坐標(biāo)是(1,4);

當(dāng)斯=FC時(shí),NFCE=ZCEF=45°,

ACE是等腰直角4CD的角平分線,

是期的中點(diǎn),ZFEC=ZECD=45°,

:.EF//CD,

二方是/C的中點(diǎn),

CF=1,

尸的坐標(biāo)是:(1,2);

③當(dāng)£F=C£?時(shí),

/\CDES&EAF,

ACDE2AEAF,

:.CD=EA=4,

???AD=yJCD2+AC2=472

DE=AF=AD-EA=442-4

;.CF=^C-T1F=4-(4V2-4)=8-4V2,

的坐標(biāo)是:(1,8-4收).

綜上,點(diǎn)尸的坐標(biāo)為:(1,2)或(1,4)或0,8-4后).

【點(diǎn)睛】本題主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式,三角形相似的判定條件坐標(biāo)與圖

形,等腰三角形的存在問(wèn)題,綜合性性強(qiáng).

424

4.如圖1,在平面直角坐標(biāo)系中,直線>=彳'+12與雙曲線歹=-一交于45兩點(diǎn)(點(diǎn)A在點(diǎn)5左邊),

3x

過(guò)4。兩點(diǎn)作直線,與雙曲線的另一交點(diǎn)為。,過(guò)5作直線49的平行線交雙曲線于點(diǎn)C.

(1)則點(diǎn)A坐標(biāo)為點(diǎn)3坐標(biāo)為并求直線8C的解析式;

Q

(2)如圖2,點(diǎn)P在V軸負(fù)半軸上,連接P8,交直線49于點(diǎn)E,連接CE、PA,且=77s弱虛,將線段

R9在〉軸上移動(dòng),得到線段尸‘。'(如圖3),請(qǐng)求出|尸'8-。'0的最大值;

⑶如圖4,點(diǎn)/在x軸上,在平面內(nèi)是否存在一點(diǎn)N,使以點(diǎn)C、D、M、N為頂點(diǎn)的四邊形是菱形?若存在,

請(qǐng)直接寫(xiě)出符合條件的N點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)(-6,4),(-3,8),y=-jx+6

(3)點(diǎn)N的坐標(biāo)為(10,-6)或(12-2跖2)或(12+2跖2)或(0,-2)

4-

y=—x+12

3

【分析】(1)聯(lián)立方程組24即可得出點(diǎn)45的坐標(biāo),利用待定系數(shù)法先求出直線的解析式,

V=-----

Ix

再求出的解析式即可;

(2)設(shè)尸(0,a),先表示出,再求出%CE=45,結(jié)合廉研=^SABCE,求出。=-4,從而得

出尸(0,-4),將點(diǎn)5向上平移4個(gè)單位長(zhǎng)度,得到點(diǎn)與(-3,12),設(shè)點(diǎn)用、巴關(guān)于了軸對(duì)稱(chēng),則鳥(niǎo)(3,12),

連接。當(dāng)并延長(zhǎng)交y軸于點(diǎn)。,即可得解;

(3)設(shè)M(見(jiàn)0),N(s,t),分三種情況:當(dāng)CD為對(duì)角線時(shí),當(dāng)CO為邊時(shí),菱形為CZ)MN時(shí),當(dāng)CD為邊

時(shí),菱形為CD7W時(shí);分別利用菱形的性質(zhì)結(jié)合勾股定理求解即可.

4

y=—x+12

3

【解析】(1)解:聯(lián)立方程組24,

y=—

IX

:點(diǎn)A在點(diǎn)8左邊,

.?./(-6,4),5(-3,8),

設(shè)直線AO的解析式為y=kx(k豐0),

將”(-6,4)代入解析式得:-6左=4,

解得:k=j

2

...直線ZO的解析式為y=

BC〃OA,

2

設(shè)直線2C的解析式為:y=--x+b,

將2(-3,8)代入解析式得:一:義(-3)+6=8,

解得:6=6,

2

直線3C的解析式為:v=-jx+6;

(2)解:?.?點(diǎn)A、。關(guān)于原點(diǎn)對(duì)稱(chēng),A(-6,4),

D(6,—4),

:點(diǎn)P在V軸負(fù)半軸上,

設(shè)尸(0,。),

令直線A5交了軸于尸,

4

在y=§x+12中,當(dāng)x=0時(shí),y=i2,即廠(0,12),

PF=12—a,

1x13

SA*BP=S.APF—S.BPF=~(12-a)x6--x(12-a)x3=18--a,

2,

y=——x+6

-3

聯(lián)立

24

y=—

X

解得:

:.C(12,-2),

:?BC=^[12-(-3)]2+(-2-8)2=5岳,

作。G_L8C于G,連接CD、BD,則BD=J(-3-+[8-(-4)了=15,C£>=^(12-6

222

由勾股定理得:BG=NBD?-DG。=-225-/,CG=y/CD-DG=740-A>

■:CG+BG=BC=5岳,

J225-力2+,40-/=5而,

解得:h獸叵(負(fù)值舍去),

13

.八廠_18后

13

BC〃CU,

.c1D廠八廠1</7718V13

??S=—BC,DG=—x57、Jx--------=45,

△BCE2213

?S^PAB=百^/\BCE,

38

A18——Q=—x45,

215

解得:a=-4,

???P(0,—4),則OP=4,

如圖,將點(diǎn)3向上平移4個(gè)單位長(zhǎng)度,得到點(diǎn)耳(-3,12),則8用=P。=4=戶(hù)。,則34。下為平行四邊形,

P'B=O'Bl,

設(shè)點(diǎn)與、鳥(niǎo)關(guān)于y軸對(duì)稱(chēng),則與(3,12),連接。坊并延長(zhǎng)交y軸于點(diǎn)O,

/.\P'B-O'D\=\O'B}-O'D\=\0'B2-。到的最大值為DB2=J(6-3『+(-4-12『=7265;

(3)解:由(2)可得:C(12,-2),D(6,-4),

設(shè)M(加,0),Ng),

?.?以點(diǎn)GD、M、N為頂點(diǎn)的四邊形是菱形,

12+6=加+s

當(dāng)。為對(duì)角線時(shí),-2+(-4)=0

加=8

解得:<s=10,即N(10,-6),

t=-6

12+機(jī)=6+5

當(dāng)CQ為邊時(shí),菱形為時(shí),1-2+0=-4+,

J(s-12)2+[,一(一2)]=J(S—加)2+?_0)2

加=6+2y/6m=6—2^6

解得:卜=12+26或卜=12—26,即N02+2后,2)或N02—2指,2);

t=2t=2

12+5=6+m

當(dāng)CQ為邊時(shí),菱形為CDW時(shí),《-2+£=-4+0

m=6Im=18

解得:<s=o或r=6(不符合題意,舍去),即N(0,-2);

n=—2[〃=-2

綜上所述,點(diǎn)N的坐標(biāo)為(10,-6)或92-2跖2)或(12+2跖2)或(0,-2).

【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題、求一次函數(shù)解析式、三角形面積公式、勾股定理、

菱形的性質(zhì)等知識(shí)點(diǎn),熟練掌握以上知識(shí)點(diǎn)并靈活運(yùn)用,采用數(shù)形結(jié)合與分類(lèi)討論的思想是解此題的關(guān)鍵.

題型2:動(dòng)點(diǎn)問(wèn)題

12

5.已知反比例函數(shù)了=一,直線4:y=kx+m(k^0),直線人與反比例函數(shù)交于點(diǎn)4),8(-21),與x

X

(1)求直線4的解析式;

⑵過(guò)點(diǎn)C作無(wú)軸的垂線4,4上有一動(dòng)點(diǎn)過(guò)點(diǎn)M作y軸的垂線段與夕軸交于點(diǎn)N,連接8V,求

AM+MN+NB的最小值和此時(shí)M點(diǎn)的坐標(biāo);

(3)在(2)問(wèn)的前提下,當(dāng)/〃+九W+N5取得最小值時(shí),作點(diǎn)〃關(guān)于x軸的對(duì)稱(chēng)點(diǎn)。在坐標(biāo)軸上有一

動(dòng)點(diǎn)P,^ZPAC=ZQCA,求點(diǎn)尸的坐標(biāo),并寫(xiě)出其中一種情況的過(guò)程.

【答案】(l?=2x-2

(2)/M+ACV+8N的最小值為2回+1;M(LT)

⑶(3,0)或\g,o]或卜j

【分析】(1)利用反比例函數(shù)解析式求出/、2坐標(biāo),再利用待定系數(shù)法求出直線人的解析式即可;

(2)先求出點(diǎn)C的坐標(biāo),進(jìn)而求出點(diǎn)M的橫坐標(biāo),則MN=1;如圖所示,過(guò)點(diǎn)3作

BH//MN,BH=MN,連接AH,則證明四邊形是平行四邊形,得至1]氏¥=〃腹,

則當(dāng)/、m、X三點(diǎn)共線時(shí),+有最小值,即此時(shí)++有最小值,最小值為/〃+1,利

57

用勾股定理得到4f7=2a,則/M+兒W+3N的最小值為2亞'+1;求出直線解析式為》=5才-5,

進(jìn)而可得M0T);

(3)根據(jù)關(guān)于x軸對(duì)稱(chēng)的點(diǎn)橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù)得到0(1,1),如圖3-1所示,當(dāng)點(diǎn)P在x軸上

時(shí),則C0〃2P,可得4P〃了軸,則點(diǎn)P的坐標(biāo)為(3,0);

如圖3-2所示,在直線C。上且在點(diǎn)0上方找一點(diǎn)K,連接/K使得/K=CK,設(shè)K(1J),由勾股定理得到

(l-3)2+(Z-4)2=Z2,解方程得到小島,同理可得直線4K解析式為蚱卜+:則直線尸。與x軸,

y軸分別交于卜:,0;/,£(,由等邊對(duì)等角得到NKC=/0C4,則當(dāng)點(diǎn)尸在射線/K(不包括/)上

時(shí)都滿足題意,再由尸在坐標(biāo)軸上,可得點(diǎn)尸的坐標(biāo)為或卜彳).

121212

【解析】(1)解:在歹=一中,當(dāng)y=—=4時(shí),x=3;當(dāng)x=-2時(shí),y=—=-6,

XXX

;./(3,4),5(-2,-6),

3左+加=4

把4(3,4),8(-2,-6)代入了=丘+加優(yōu)*0)中得:

-2k+加=-6

k=2

解得

m=-2,

???直線4的解析式為片27;

(2)解:在y=2x-2中,當(dāng)y=2x-2=0時(shí),x=l,

,直線4軸,

/.點(diǎn)M的橫坐標(biāo)為1,

:Wy軸,

:.MN=\;

如圖所示,過(guò)點(diǎn)、B作BH〃MN,BH=MN,連接MHAH,則

四邊形是平行四邊形,

BN=HM,

,AM+MN+BN=AM+HM+\,

.?.當(dāng)/、M、〃三點(diǎn)共線時(shí),+有最小值,即此時(shí)4W+MN+8N有最小值,最小值為/〃+1,

?.?/(3,4),7/(-1,-6),

;?AH=J(-l-3『+(-6-4)2=2回,

:./M+MV+3N的最小值為2回+1;

設(shè)直線AH解析式為y=kxx+bx,

3kl+4=4

把/(3,4),“(-1,-6)代入y=《x+4中得:

-左+4=-6

解得,

4=—

[2

57

...直線/"解析式為y=,

57

在〉=—x-不中,當(dāng)x=l時(shí),、=-1,

-22

(3)解;由(2)知朋'(1,-1),

?.?點(diǎn)〃■與點(diǎn)0關(guān)于原點(diǎn)對(duì)稱(chēng),

.1.2(1,1),

VC(1,O),

.?.CQ〃y軸,

如圖3-1所示,當(dāng)點(diǎn)尸在X軸上時(shí),

NPAC=ZQCA,

/.CQ//AP,

,AP//y^,

:/(3,4),

點(diǎn)尸的坐標(biāo)為(3,0);

如圖3-2所示,在直線C。上且在點(diǎn)。上方找一點(diǎn)K,連接/K使得NK=CK,

設(shè)

(1-3)2+(1-4)2=/,

解得/=:,

同理可得直線4K解析式為y=3+7:,

44

373777

在>=:工+:中,當(dāng)歹=:1+:=。時(shí),x=一;;當(dāng)%=0時(shí),y=-,

444434

二直線尸%+:與X軸一軸分別交于[一10],U,

AK=CK,

:.ZKAC=ZKCA,即/gC=/0C4,

當(dāng)點(diǎn)P在射線NK(不包括4)上時(shí)都滿足題意,

又在坐標(biāo)軸上,

二點(diǎn)p的坐標(biāo)為或

綜上所述,點(diǎn)尸的坐標(biāo)為(3,0)或卜:,0)或(0,:).

【點(diǎn)睛】本題主要考查了反比例函數(shù)與一次函數(shù)綜合,勾股定理,平行四邊形的性質(zhì)與判定,等邊對(duì)等角,

一次函數(shù)與幾何綜合,坐標(biāo)與圖形變化一軸對(duì)稱(chēng)等等,利用分類(lèi)討論的思想求解是解題的關(guān)鍵.

6.如圖1,已知雙曲線了=&經(jīng)過(guò)口/BCD的C、。兩點(diǎn),且點(diǎn)4-1,0),3(0,-2),C(2,2).

(1)求雙曲線和直線DC對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)如圖2,點(diǎn)尸在雙曲線了=勺上,點(diǎn)0在y軸上,若以點(diǎn)A、B、P、。為頂點(diǎn)的四邊是平行四邊形,請(qǐng)

直接寫(xiě)出滿足要求的所有點(diǎn)。的坐標(biāo);

⑶如圖3,以線段為對(duì)角線作正方形點(diǎn)T是邊相(不含點(diǎn)A、尸)上一個(gè)動(dòng)點(diǎn),點(diǎn)/是5

的中點(diǎn),MNLHT,交AB于點(diǎn)、N.當(dāng)T在加上運(yùn)動(dòng)時(shí),/7W的度數(shù)是否會(huì)變化?若會(huì)的話,請(qǐng)給出你

的證明過(guò)程.若不是的話,只要給出結(jié)論.

4

【答案】(1)反比例函數(shù)的解析式為^=一;直線。。的函數(shù)關(guān)系式為丁=-2X+6

x

⑵滿足要求的所有點(diǎn)。的坐標(biāo)為:0(0,6)、。(0,-6)、0(0,2)

(3)/7W的度數(shù)不會(huì)變化,等于45。

【分析】(1)把。(2,2)代入y=幺求出左值,可得反比例函數(shù)解析式,根據(jù)平行四邊形的性質(zhì)得出。點(diǎn)坐標(biāo),

利用待定系數(shù)法即可得出直線DC解析式;

(2)可分兩種情況:AB為邊、4B為對(duì)角線討論,然后運(yùn)用中點(diǎn)坐標(biāo)公式即可解決問(wèn)題;

(3)過(guò)點(diǎn)N作于S,作尸于R,連接人力、NT,根據(jù)正方形的性質(zhì)及角平分線的性質(zhì)可

得NR=NS,利用HL可證明RtATW^RtAffiN,得出4RNT=NSNH,由此可得/7W=/7WS=90。,

即可得到△7W是等腰直角三角形,因而/.THN=45°為定值.

k

【解析】(1)解:??,雙曲線V=—經(jīng)過(guò)口45C。的。、。兩點(diǎn),且點(diǎn)4(—1,0),5(0,-2),C(2,2),

x

左=2x2=4,

4

反比例函數(shù)的解析式為:y=—,

???四邊形Z8S是平行四邊形,4-1,0),8(0,-2),C(2,2),

[a+b=4

設(shè)直線。。的函數(shù)關(guān)系式為:y=ax+b,則/7.

a-2

解得:

b=6

???直線。。的函數(shù)關(guān)系式為:y=-2x+6.

4

(2)解:由(1)知:反比例函數(shù)的解析式為:片一

x

4

???點(diǎn)尸在雙曲線^=—上,點(diǎn)。在y軸上,

x

.?.設(shè)o(o,y),尸m

①如圖1,當(dāng)4B為邊時(shí),

若四邊形/BP。為平行四邊形,則曰尸=0,

解得:x=l,

:.尸(1,4),

.0+4

??N,

2

,20中點(diǎn)坐標(biāo)為(0,2),8(0,-2),

?_2+打

??—乙,

2

解得:坨=6,

2(0,6).

如圖2,若四邊形/BQP為平行四邊形,

?/四邊形ABQP為平行四邊形,

:.AP//BQ,AP=BQ,

4-1,0),

/.P(-l,-4),則/尸=4,

/.AP=BQ=4,

?:5(0,-2),

0(0,-6).

②如圖3,當(dāng)48為對(duì)角線時(shí),

二?四邊形/尸3。為平行四邊形,

AP//BQ,AP=BQ,

V4-1,0),

/.P(-l,-4),則/尸=4,

/.AP=BQ=4,

???2(0,2).

綜上所述,滿足要求的所有點(diǎn)。的坐標(biāo)為:0(0,6)、0(0,-6)、2(0,2).

(3)解:當(dāng)T在"'上運(yùn)動(dòng)時(shí),/77W的度數(shù)不會(huì)變化,等于45。,理由如下:

過(guò)點(diǎn)"作用*_1_/〃于S,作NR工AF于R,連接NH,NT,如圖所示,

NFAB=NHAB=45°,

:.NR=NS,

7點(diǎn)M是印1的中點(diǎn),MNLHT,

:.NT=NH,

RtATRN=RtMiSN(HL),

/.ZRNT=ZSNH,

NTNH=ARNS=90°,

???A7W是等腰直角三角形,

,Z7W=45°.

【點(diǎn)睛】本題主要考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、平行四邊形的性質(zhì)、正方形的性質(zhì)、全等三角

形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、中點(diǎn)坐標(biāo)公式等知識(shí),運(yùn)用分類(lèi)討論是解決第(2)小題

的關(guān)鍵,除用中點(diǎn)坐標(biāo)公式外,也可通過(guò)構(gòu)造全等三角形來(lái)解決第(1)題和第(2)題.

7.已知:如圖,正比例函數(shù)'的圖象與反比例函數(shù)了=幺的圖象交于點(diǎn)力(3,2).

O\CX

⑴試確定上述正比例函數(shù)和反比例函數(shù)的表達(dá)式;

⑵根據(jù)圖象回答,在第一象限內(nèi),當(dāng)X取何值時(shí),反比例函數(shù)的值大于正比例函數(shù)的值?

⑶是反比例函數(shù)圖象上的一動(dòng)點(diǎn),其中0<加<3,過(guò)點(diǎn)Af作直線軸,交V軸于點(diǎn)3;過(guò)點(diǎn)

A作直線/C||y軸,交x軸于點(diǎn)C,交直線M3于點(diǎn)。.當(dāng)四邊形O4DM的面積為6時(shí),請(qǐng)判斷線段9與

DM的大小關(guān)系,并說(shuō)明理由.

【答案】⑴了="y=-

3x

(2)0<x<3

(3)BM=DM,理由見(jiàn)解析

【分析】本題主要考查了反比例函數(shù)與幾何綜合,反比例函數(shù)與一次函數(shù)綜合:

(1)利用待定系數(shù)法求解即可;

(2)根據(jù)函數(shù)圖象找到反比例函數(shù)圖象在一次函數(shù)圖象上方時(shí)自變量的取值范圍即可;

(3)先推出5。,08,CD±OC,貝U0C=3,由反比例函數(shù)比例系數(shù)的幾何意義得到

63

40c=a=3,則S四邊形03℃=S△OBM+24oc+S四邊形0力A”二12,據(jù)此求出08=4,則以/二^,再由

3

BD=0C=3,即可得到3河=。〃=,.

2

【解析】(1)解:把4(3,2)代入)="中得:2=3*解得〃=§,

2

???正比例函數(shù)解析式為V=§x;

kk

把4(3,2)代入>=—中得:2=-,解得上=6,

x3

???反比例函數(shù)解析式為>=9;

X

(2)解:由函數(shù)圖象可知,當(dāng)0<x<3時(shí),反比例函數(shù)的值大于正比例函數(shù)的值;

(3)解:BM^DM,理由如下:

:3Z)〃x軸,CD〃y軸,

Z.BD±OB,CDLOC,

:4(3,2),

/.0C=3,

..?點(diǎn)/和點(diǎn)M都在反比例函數(shù)圖象上,

6

??S/^OBM=S^AOC=5=3,

???四邊形CUZW的面積為6,

??S四邊形05DC-S4OBM+^/\AOC+S四邊形Q4OM二12,

.??ocoB=n,

:.OB=4,

:.-x4BM=3

2f

3

:,BM=—,

2

又,:BD=0C=3,

3

:.BM=DM=~,

2

題型3:旋轉(zhuǎn)問(wèn)題

YY]

8.如圖①,一次函數(shù)必=2x+4的圖像交反比例函數(shù)%=—圖像于點(diǎn)A,B,交x軸于點(diǎn)C,點(diǎn)3為

X

⑴求反比例函數(shù)的解析式;

(2)如圖②,點(diǎn)/為反比例函數(shù)在第一象限圖像上的一點(diǎn),過(guò)點(diǎn)M作x軸垂線,交一次函數(shù)M=2x+4圖像

于點(diǎn)N,連接9,若ABMN是以為底邊的等腰三角形,求ABMN的面積;

(3)如圖③,將一次函數(shù)弘=2x+4的圖像繞點(diǎn)C順時(shí)針旋轉(zhuǎn)45。交反比例函數(shù)%="■圖像于點(diǎn)。,E,求點(diǎn)

X

E的坐標(biāo).

【答案】⑴Y

X

(2)8

IM+1]

⑶£

【分析】(1)首先確定點(diǎn)3坐標(biāo),然后根據(jù)待定系數(shù)法求反比例解析式即可;

(2)設(shè)點(diǎn)N的坐標(biāo)為&2f+4),則點(diǎn),根據(jù)題意,是以為底邊的等腰三角形,則點(diǎn)8

在"N的垂直平分線上,易得;(2/+4+。)=6,解得t的值,進(jìn)而確定點(diǎn)刊,N的坐標(biāo),然后根據(jù)三角形

面積公式求解即可;

(3)設(shè)一次函數(shù)乂=2x+4的圖像與y軸交于點(diǎn)尸,過(guò)點(diǎn)尸作尸于。,過(guò)。作軸于尺,過(guò)點(diǎn)

尸作尸尸,0R,交尺。延長(zhǎng)線于點(diǎn)P,證明AEP0絲AQRC,由全等三角形的性質(zhì)可得以=0尸,F(xiàn)P=QR,

/、[a=b

設(shè)。39,易得求解即可確定點(diǎn)。坐標(biāo),進(jìn)而可利用待定系數(shù)法解得直線co的解析式,聯(lián)

[4一6=〃+2

立直線C0的解析式>==x+:與反比例函數(shù)解析式尸9,求解即可獲得答案.

33x

【解析】(1)解:對(duì)于一次函數(shù)%=2%+4,

當(dāng)%=1時(shí),可有y=2x+4=6,

???點(diǎn)8(1,6),

將點(diǎn)5的坐標(biāo)代入反比例函數(shù)表達(dá)式%=上,

X

可得左=1x6=6,

即反比例函數(shù)表達(dá)式為V=9;

X

(2)設(shè)點(diǎn)N的坐標(biāo)為。2+4),則點(diǎn)河?,

若ABMN是以MN為底邊的等腰三角形,則點(diǎn)8在的垂直平分線上,

則有(2'+4+,=6,

解得看=1(舍去)或%=3,

AM(3,2),TV(3,10),

則%”'=9的.國(guó)-/)=9(10-2)x(3-1)=8;

(3)設(shè)一次函數(shù)必=2x+4的圖像與V軸交于點(diǎn)尸,過(guò)點(diǎn)B作尸0LCD于。,過(guò)。作軸于R,過(guò)點(diǎn)

尸作尸尸,Q?,交及。延長(zhǎng)線于點(diǎn)P,如下圖,

對(duì)于一次函數(shù)y=2x+4,

令x=o,可有y=4,即尸的坐標(biāo)為(0,4),

令y=o,可有0=2x+4,解得x=-2,即C的坐標(biāo)為(-2,0),

由題意可知,一次函數(shù)必=2x+4的圖像繞點(diǎn)C順時(shí)針旋轉(zhuǎn)45。交反比例函數(shù)%=—圖像于點(diǎn)。,E,

X

??."。。=45。,

?.?FQLCD,

:.ZCFQ=90°-ZFCQ=45°=ZFCQ,

:.CQ=FQ,

?:FQLCD,FPLPR,軸,

/.ZPFQ+ZPQF=ZPQF+ZRQC=90°,

...ZPFQ=/RQC,

又,.?ZFPQ=ZQRC=90°,

;.AFPQ4QRC(AAS),

;?CR=QP,FP=QR,

設(shè)。(。,6),

,/C(-2,0),尸(0,4),

OC=2,OF=PR=4,OR=a,QR=b,

a=b[a=1

可有

4-b=a+2解得kl

設(shè)直線CQ的解析式為y=kx+6(k小0),

將點(diǎn)0(1,1),C(—2,0)代入,

1=k+b

可得0=-2k+b'解得

12

直線CQ的解析式為y="x+:,

聯(lián)立直線C0的解析式+]與反比例函數(shù)解析式y(tǒng)=

33x

12

y=-x—

曰十日

r可得,彳,33,可得;1》+;2=一6,

633x

y=-

lx

整理可得,+2x-18=0,

解得西=一1=-1-V19(不合題意,舍去),

,V19+1

??y----------,

3

:.EF

【點(diǎn)睛】本題主要考查了反比例函數(shù)與一次函數(shù)綜合應(yīng)用、全等三角形的判定與性質(zhì)、等腰三角形的判定

與性質(zhì)、解一元二次方程等知識(shí),綜合性強(qiáng),難度較大,解題關(guān)鍵是綜合運(yùn)用相關(guān)知識(shí),并運(yùn)用數(shù)形結(jié)合

的思想分析問(wèn)題.

X

⑵如圖2,當(dāng)直線V=x+"經(jīng)過(guò)點(diǎn)/時(shí),它與反比例函數(shù)了=匚的另一個(gè)交點(diǎn)記為3,在y軸上找一點(diǎn)

X

使的周長(zhǎng)最小,求出M的坐標(biāo)及周長(zhǎng)的最小值;

(3)如圖3,點(diǎn)尸是反比例函數(shù)圖象上4點(diǎn)左側(cè)一點(diǎn),連接加>,把線段"繞點(diǎn)/逆時(shí)針旋轉(zhuǎn)90。,點(diǎn)P的

對(duì)應(yīng)點(diǎn)。恰好也落在這個(gè)反比例函數(shù)的圖象上,求點(diǎn)P的坐標(biāo).

【答案】⑴"=±2e

⑵△MAB周長(zhǎng)的最小值為2(&+0),點(diǎn)M的坐標(biāo)為[o,g)

⑶尸[-臼

【分析】(1)聯(lián)立反比例函數(shù)與一次函數(shù)的解析式,根據(jù)一元二次方程根的判別式求解即可;

(2)將4。,3)代入反比例函數(shù)的解析式求得。=一1,再將47,3)代入y=x+〃,即可求解出"的值,聯(lián)立

反比例函數(shù)與一次函數(shù)的解析式,求出點(diǎn)2的坐標(biāo),作點(diǎn)/關(guān)于丁軸的對(duì)稱(chēng)點(diǎn)H,連接8H,交y軸與點(diǎn)

M,連接此時(shí)△跖48的周長(zhǎng)最小,為48的長(zhǎng),利用兩點(diǎn)的距離公式解答即可,設(shè)直線48解析式為

y=kx+b,利用待定系數(shù)法求出解析式,令x=0,即可求出點(diǎn)M的坐標(biāo);

(3)過(guò)點(diǎn)尸,。作x軸的垂線,與過(guò)點(diǎn)A作x軸的平行線,分別交于點(diǎn)及尸,設(shè)點(diǎn)尸■機(jī)<0),證明

△QAF知APE(AAS),根據(jù)/(-1,3),得到/E=0尸=-(1+加),£尸=4F=3+—,進(jìn)而得出

m

/(2+\,4+加),根據(jù)尸點(diǎn)在反比例函數(shù)上,代入解析式,求解即可.

'-3

y——3

【解析】⑴解:根據(jù)題意X,則一=x+〃,

y=x+nX

即―+3=0,

???反比例函數(shù)>=口的圖象與一次函數(shù)y=x+"的圖象只有一個(gè)公共點(diǎn),

X

.?.〃2—4xlx3=0,BPn2=12,

n=+2^3;

(2)解:?.?反比例函數(shù)>=口的圖象經(jīng)過(guò)點(diǎn)”(a,3),

X

a

a=—1f

.?./(-1,3),

將4(一1,3)代入y=x+〃,貝|J3=—1+”,

二4,

二?一次函數(shù)的解析式為:V=%+4,

3

聯(lián)立反比例函數(shù)與一次函數(shù)的解析式得y='—x,則=x+4,

y=x+4X

即f+4x+3=0,

再=—l,x2=—3,

當(dāng)x=-3時(shí),y=1,

根據(jù)題意得:5(-3,1),

???AM=A'M,

.-.AM+BM+AB=A'M+BM+AB=A'B+AB,

此時(shí)的周長(zhǎng)最小,為4B+/3的長(zhǎng),

...AB=了+(3-1)2=272,A'B=^[1-(-3)]2+(3-1)2=2#>,

42+/8=2(夜+司;

設(shè)直線48解析式為了=丘+6,

]_

l=-3k+b2

則,解得

3=k+b工,

2

???直線42解析式為y=gx+g,

令x=0,則尸g,

點(diǎn)”的坐標(biāo)為[o,1^;

(3)解:過(guò)點(diǎn)尸,。作x軸的垂線,與過(guò)點(diǎn)A的x軸的平行線,分別交于點(diǎn)旦尸,

圖3

設(shè)點(diǎn)p(機(jī),一:)(機(jī)<o(jì)),

???4(-1,3),

E(加,3),

/.AE=-1—m=—(1+m\^EP=3——|=3+-

Vm)m

由旋轉(zhuǎn)知:AP=AQ,ZPAQ=90°

???/LEAP+NQAF=NEAP+AAPE=90°,

AQAF=/APE,

???4E=4F=90°,

,△勿尸之△HPE(AAS),

3

AE=QF=-(l+m),EP=AF=3+—

mf

H—,4+加],

:。點(diǎn)在反比例函數(shù)上,

二.(4+加)(2+7]=-3,艮0加2+7加+6=0,

解得加=-6或m=-1(舍去),

【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,軸對(duì)稱(chēng)求最短距離,等腰直角三角形的性質(zhì),全

等三角形的判定與性質(zhì).利用待定系數(shù)法確定一次函數(shù)的解析式;熟練掌握對(duì)稱(chēng)的性質(zhì)及等腰三角形的性

質(zhì)是解題的關(guān)鍵.

題型4:新定義題

10.在平面直角坐標(biāo)系中,定義:橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn)為整點(diǎn)?如圖,已知雙曲線>=?(x>0)經(jīng)過(guò)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論