廣州理工學院《機器學習A實驗》2023-2024學年第二學期期末試卷_第1頁
廣州理工學院《機器學習A實驗》2023-2024學年第二學期期末試卷_第2頁
廣州理工學院《機器學習A實驗》2023-2024學年第二學期期末試卷_第3頁
廣州理工學院《機器學習A實驗》2023-2024學年第二學期期末試卷_第4頁
廣州理工學院《機器學習A實驗》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁廣州理工學院

《機器學習A實驗》2023-2024學年第二學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、假設要對一個時間序列數據進行預測,例如股票價格的走勢。數據具有明顯的趨勢和季節性特征。以下哪種時間序列預測方法可能較為合適?()A.移動平均法B.指數平滑法C.ARIMA模型D.以上方法都可能適用,取決于具體數據特點2、在自然語言處理中,詞嵌入(WordEmbedding)的作用是()A.將單詞轉換為向量B.進行詞性標注C.提取文本特征D.以上都是3、在進行圖像識別任務時,需要對大量的圖像數據進行特征提取。假設我們有一組包含各種動物的圖像,要區分貓和狗。如果采用傳統的手工設計特征方法,可能會面臨諸多挑戰,例如特征的選擇和設計需要豐富的專業知識和經驗。而使用深度學習中的卷積神經網絡(CNN),能夠自動從數據中學習特征。那么,以下關于CNN在圖像特征提取方面的描述,哪一項是正確的?()A.CNN只能提取圖像的低級特征,如邊緣和顏色B.CNN能夠同時提取圖像的低級和高級語義特征,具有強大的表達能力C.CNN提取的特征與圖像的內容無關,主要取決于網絡結構D.CNN提取的特征是固定的,無法根據不同的圖像數據集進行調整4、假設我們要使用機器學習算法來預測股票價格的走勢。以下哪種數據特征可能對預測結果幫助較小()A.公司的財務報表數據B.社交媒體上關于該股票的討論熱度C.股票代碼D.宏觀經濟指標5、在一個強化學習問題中,智能體需要在環境中通過不斷嘗試和學習來優化其策略。如果環境具有高維度和連續的動作空間,以下哪種算法通常被用于解決這類問題?()A.Q-learningB.SARSAC.DeepQNetwork(DQN)D.PolicyGradient算法6、在一個語音合成任務中,需要將輸入的文本轉換為自然流暢的語音。以下哪種技術或模型常用于語音合成?()A.隱馬爾可夫模型(HMM)B.深度神經網絡(DNN)C.循環神經網絡(RNN),如LSTM或GRUD.以上都是7、假設正在構建一個推薦系統,需要根據用戶的歷史行為和偏好為其推薦相關的產品或內容。如果數據具有稀疏性和冷啟動問題,以下哪種方法可以幫助改善推薦效果?()A.基于內容的推薦B.協同過濾推薦C.混合推薦D.以上方法都可以嘗試8、假設要使用機器學習算法來預測房價。數據集包含了房屋的面積、位置、房間數量等特征。如果特征之間存在非線性關系,以下哪種模型可能更適合?()A.線性回歸模型B.決策樹回歸模型C.支持向量回歸模型D.以上模型都可能適用9、在一個客戶流失預測的問題中,需要根據客戶的消費行為、服務使用情況等數據來提前預測哪些客戶可能會流失。以下哪種特征工程方法可能是最有幫助的?()A.手動選擇和構建與客戶流失相關的特征,如消費頻率、消費金額的變化等,但可能忽略一些潛在的重要特征B.利用自動特征選擇算法,如基于相關性或基于樹模型的特征重要性評估,但可能受到數據噪聲的影響C.進行特征變換,如對數變換、標準化等,以改善數據分布和模型性能,但可能丟失原始數據的某些信息D.以上方法結合使用,綜合考慮數據特點和模型需求10、假設正在比較不同的聚類算法,用于對一組沒有標簽的客戶數據進行分組。如果數據分布不規則且存在不同密度的簇,以下哪種聚類算法可能更適合?()A.K-Means算法B.層次聚類算法C.密度聚類算法(DBSCAN)D.均值漂移聚類算法11、在分類問題中,如果正負樣本比例嚴重失衡,以下哪種評價指標更合適?()A.準確率B.召回率C.F1值D.均方誤差12、在一個分類問題中,如果類別之間的邊界不清晰,以下哪種算法可能能夠更好地處理這種情況?()A.支持向量機B.決策樹C.樸素貝葉斯D.隨機森林13、欠擬合也是機器學習中需要關注的問題。以下關于欠擬合的說法中,錯誤的是:欠擬合是指模型在訓練數據和測試數據上的表現都不佳。欠擬合的原因可能是模型過于簡單或者數據特征不足。那么,下列關于欠擬合的說法錯誤的是()A.增加模型的復雜度可以緩解欠擬合問題B.收集更多的特征數據可以緩解欠擬合問題C.欠擬合問題比過擬合問題更容易解決D.欠擬合只在小樣本數據集上出現,大規模數據集不會出現欠擬合問題14、某機器學習項目需要對文本進行情感分類,同時考慮文本的上下文信息和語義關系。以下哪種模型可以更好地處理這種情況?()A.循環神經網絡(RNN)與注意力機制的結合B.卷積神經網絡(CNN)與長短時記憶網絡(LSTM)的融合C.預訓練語言模型(如BERT)微調D.以上模型都有可能15、在構建一個機器學習模型時,我們通常需要對數據進行預處理。假設我們有一個包含大量缺失值的數據集,以下哪種處理缺失值的方法是較為合理的()A.直接刪除包含缺失值的樣本B.用平均值填充缺失值C.用隨機值填充缺失值D.不處理缺失值,直接使用原始數據16、某機器學習項目需要對文本進行主題建模,以發現文本中的潛在主題。以下哪種方法常用于文本主題建模?()A.潛在狄利克雷分配(LDA)B.非負矩陣分解(NMF)C.概率潛在語義分析(PLSA)D.以上方法都常用17、在進行模型選擇時,除了考慮模型的性能指標,還需要考慮模型的復雜度和可解釋性。假設我們有多個候選模型。以下關于模型選擇的描述,哪一項是不正確的?()A.復雜的模型通常具有更高的擬合能力,但也更容易過擬合B.簡單的模型雖然擬合能力有限,但更容易解釋和理解C.對于一些對可解釋性要求較高的任務,如醫療診斷,應優先選擇復雜的黑盒模型D.在實際應用中,需要根據具體問題和需求綜合權衡模型的性能、復雜度和可解釋性18、在一個分類問題中,如果數據集中存在噪聲和錯誤標簽,以下哪種模型可能對這類噪聲具有一定的魯棒性?()A.集成學習模型B.深度學習模型C.支持向量機D.決策樹19、在一個圖像生成任務中,例如生成逼真的人臉圖像,生成對抗網絡(GAN)是一種常用的方法。GAN由生成器和判別器組成,它們在訓練過程中相互對抗。以下關于GAN訓練過程的描述,哪一項是不正確的?()A.生成器的目標是生成盡可能逼真的圖像,以欺騙判別器B.判別器的目標是準確區分真實圖像和生成器生成的圖像C.訓練初期,生成器和判別器的性能都比較差,生成的圖像質量較低D.隨著訓練的進行,判別器的性能逐漸下降,而生成器的性能不斷提升20、假設要對一個復雜的數據集進行降維,以便于可視化和后續分析。以下哪種降維方法可能是最有效的?()A.主成分分析(PCA),尋找數據的主要方向,但可能丟失一些局部信息B.線性判別分析(LDA),考慮類別信息,但對非線性結構不敏感C.t-分布隨機鄰域嵌入(t-SNE),能夠保持數據的局部結構,但計算復雜度高D.以上方法結合使用,根據數據特點和分析目的選擇合適的降維策略21、在機器學習中,監督學習是一種常見的學習方式。假設我們有一個數據集,包含了房屋的面積、房間數量、地理位置等特征,以及對應的房價。如果我們想要使用監督學習算法來預測新房屋的價格,以下哪種算法可能是最合適的()A.K-Means聚類算法B.決策樹算法C.主成分分析(PCA)D.獨立成分分析(ICA)22、在處理自然語言處理任務時,詞嵌入(WordEmbedding)是一種常用的技術。假設我們要對一段文本進行情感分析。以下關于詞嵌入的描述,哪一項是錯誤的?()A.詞嵌入將單詞表示為低維實數向量,捕捉單詞之間的語義關系B.Word2Vec和GloVe是常見的詞嵌入模型,可以學習到單詞的分布式表示C.詞嵌入向量的維度通常是固定的,且不同單詞的向量維度必須相同D.詞嵌入可以直接用于文本分類任務,無需進行進一步的特征工程23、假設要對一個大型數據集進行無監督學習,以發現潛在的模式和結構。以下哪種方法可能是首選?()A.自編碼器(Autoencoder),通過重構輸入數據學習特征,但可能無法發現復雜模式B.生成對抗網絡(GAN),通過對抗訓練生成新數據,但訓練不穩定C.深度信念網絡(DBN),能夠提取高層特征,但訓練難度較大D.以上方法都可以嘗試,根據數據特點和任務需求選擇24、某研究團隊正在開發一個用于醫療圖像診斷的機器學習模型,需要提高模型對小病變的檢測能力。以下哪種方法可以嘗試?()A.增加數據增強的強度B.使用更復雜的模型架構C.引入注意力機制D.以上方法都可以25、假設正在進行一個目標檢測任務,例如在圖像中檢測出人物和車輛。以下哪種深度學習框架在目標檢測中被廣泛應用?()A.TensorFlowB.PyTorchC.CaffeD.以上框架都常用于目標檢測二、簡答題(本大題共4個小題,共20分)1、(本題5分)機器學習中如何進行模型的選擇和比較?2、(本題5分)機器學習在系統生物學中的應用有哪些?3、(本題5分)解釋如何在機器學習中處理噪聲數據。4、(本題5分)談談在實際應用中,如何選擇合適的機器學習算法。三、應用題(本大題共5個小題,共25分)1、(本題5分)通過天文學觀測數據發現新的天體和現象。2、(本題5分)使用決策樹算法對客戶流失進行預測。3、(本題5分)借助病理學數據診斷病理類型和評估疾病嚴重程度。4、(本題5分)借助康復工程數據優化康復設備和輔助器具。5、(本題5分)運用長短時記憶網絡(LSTM)對文本進行情感分析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論