哈爾濱工程大學(xué)《大數(shù)據(jù)分析與挖掘》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
哈爾濱工程大學(xué)《大數(shù)據(jù)分析與挖掘》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
哈爾濱工程大學(xué)《大數(shù)據(jù)分析與挖掘》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
哈爾濱工程大學(xué)《大數(shù)據(jù)分析與挖掘》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
哈爾濱工程大學(xué)《大數(shù)據(jù)分析與挖掘》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁哈爾濱工程大學(xué)《大數(shù)據(jù)分析與挖掘》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在大數(shù)據(jù)處理中,常常需要對(duì)數(shù)據(jù)進(jìn)行分區(qū)。假設(shè)有一個(gè)大規(guī)模的數(shù)據(jù)集,需要按照某個(gè)字段的值進(jìn)行分區(qū)存儲(chǔ),以便提高查詢效率。以下哪種分區(qū)方式在處理這種數(shù)據(jù)時(shí)可能效果較好?()A.哈希分區(qū)B.范圍分區(qū)C.列表分區(qū)D.Alloftheabove(以上皆是)2、對(duì)于一個(gè)需要處理大量文本數(shù)據(jù)的自然語言處理系統(tǒng),以下哪種技術(shù)能夠進(jìn)行詞干提取和詞形還原?()A.詞法分析工具B.句法分析工具C.語義理解工具D.以上都不是3、在大數(shù)據(jù)的應(yīng)用中,醫(yī)療健康領(lǐng)域是一個(gè)重要的方向。假設(shè)要通過分析患者的電子病歷數(shù)據(jù)來發(fā)現(xiàn)疾病的潛在模式和趨勢(shì)。以下哪種數(shù)據(jù)分析方法最適合這個(gè)任務(wù)?()A.生存分析B.因子分析C.主成分分析D.聚類分析4、在大數(shù)據(jù)應(yīng)用中,用戶畫像的構(gòu)建是非常重要的。假設(shè)有一個(gè)電商平臺(tái),需要為用戶構(gòu)建畫像,以便進(jìn)行精準(zhǔn)營銷。以下哪種數(shù)據(jù)可以用于構(gòu)建用戶畫像?()A.用戶的購買記錄B.用戶的瀏覽行為C.用戶的評(píng)價(jià)信息D.Alloftheabove(以上皆是)5、在大數(shù)據(jù)項(xiàng)目中,數(shù)據(jù)質(zhì)量的監(jiān)控是持續(xù)進(jìn)行的。如果發(fā)現(xiàn)數(shù)據(jù)質(zhì)量出現(xiàn)問題,以下哪個(gè)是首要的解決步驟?()A.分析問題的根源B.修復(fù)數(shù)據(jù)C.通知相關(guān)人員D.記錄問題6、在進(jìn)行大數(shù)據(jù)分析時(shí),需要選擇合適的數(shù)據(jù)分析工具。如果數(shù)據(jù)量非常大,且需要進(jìn)行復(fù)雜的機(jī)器學(xué)習(xí)算法訓(xùn)練,以下哪種工具較為合適?()A.ExcelB.PythonC.RD.SPSS7、當(dāng)對(duì)大數(shù)據(jù)進(jìn)行數(shù)據(jù)預(yù)處理時(shí),為了處理重復(fù)數(shù)據(jù),以下哪種方法通常被使用?()A.去重操作B.合并操作C.分組操作D.排序操作8、在大數(shù)據(jù)處理中,數(shù)據(jù)ETL(Extract,Transform,Load)是一個(gè)重要的環(huán)節(jié),以下關(guān)于數(shù)據(jù)ETL的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)ETL包括數(shù)據(jù)抽取、數(shù)據(jù)轉(zhuǎn)換和數(shù)據(jù)加載三個(gè)步驟B.數(shù)據(jù)ETL可以提高數(shù)據(jù)的質(zhì)量和可用性C.數(shù)據(jù)ETL只需要對(duì)數(shù)據(jù)進(jìn)行簡單的處理,不需要考慮數(shù)據(jù)的業(yè)務(wù)含義D.數(shù)據(jù)ETL需要根據(jù)具體的業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn)進(jìn)行定制化處理9、在大數(shù)據(jù)存儲(chǔ)中,為了支持海量小文件的存儲(chǔ)和訪問,以下哪種文件系統(tǒng)通常被使用?()A.HDFSB.GFSC.CephD.以上都不是10、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)質(zhì)量的管理至關(guān)重要。以下關(guān)于數(shù)據(jù)質(zhì)量的影響因素和管理方法,哪項(xiàng)說法不準(zhǔn)確?()A.數(shù)據(jù)質(zhì)量可能受到數(shù)據(jù)來源的多樣性、數(shù)據(jù)錄入的錯(cuò)誤、數(shù)據(jù)更新的不及時(shí)等因素的影響B(tài).為了提高數(shù)據(jù)質(zhì)量,可以采用數(shù)據(jù)清洗、數(shù)據(jù)驗(yàn)證、數(shù)據(jù)監(jiān)控等方法C.數(shù)據(jù)質(zhì)量的管理只需在數(shù)據(jù)收集階段進(jìn)行,后續(xù)處理過程中無需關(guān)注D.建立數(shù)據(jù)質(zhì)量評(píng)估指標(biāo)體系有助于衡量和改進(jìn)數(shù)據(jù)質(zhì)量11、大數(shù)據(jù)存儲(chǔ)系統(tǒng)在處理海量數(shù)據(jù)時(shí)面臨諸多挑戰(zhàn)。假設(shè)一個(gè)企業(yè)需要存儲(chǔ)PB級(jí)別的數(shù)據(jù),并要求具備高可靠性和可擴(kuò)展性。以下哪種存儲(chǔ)架構(gòu)最適合?()A.傳統(tǒng)的關(guān)系型數(shù)據(jù)庫,如MySQLB.分布式文件系統(tǒng),如Hadoop的HDFSC.本地磁盤陣列,通過RAID技術(shù)保障數(shù)據(jù)安全D.云存儲(chǔ)服務(wù),如亞馬遜的S312、在大數(shù)據(jù)時(shí)代,數(shù)據(jù)驅(qū)動(dòng)決策成為一種趨勢(shì),以下關(guān)于數(shù)據(jù)驅(qū)動(dòng)決策的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)驅(qū)動(dòng)決策可以提高決策的準(zhǔn)確性和科學(xué)性B.數(shù)據(jù)驅(qū)動(dòng)決策需要建立完善的數(shù)據(jù)采集和分析體系C.數(shù)據(jù)驅(qū)動(dòng)決策只適用于企業(yè)管理,不適用于政府決策和社會(huì)治理D.數(shù)據(jù)驅(qū)動(dòng)決策需要培養(yǎng)數(shù)據(jù)分析師和數(shù)據(jù)科學(xué)家等專業(yè)人才13、在大數(shù)據(jù)分析中,特征工程是重要的一步。以下關(guān)于特征選擇和特征提取的描述,哪一項(xiàng)是錯(cuò)誤的?()A.特征選擇是從原始特征中選擇出有價(jià)值的特征,特征提取是通過某種變換生成新的特征B.特征選擇可以降低數(shù)據(jù)維度,特征提取可以提高數(shù)據(jù)的可解釋性C.主成分分析是一種特征提取方法,互信息是一種特征選擇方法D.特征選擇和特征提取的目的都是為了提高模型的性能14、在大數(shù)據(jù)處理框架中,F(xiàn)link被廣泛應(yīng)用于流處理場景。以下關(guān)于Flink的特點(diǎn),哪一項(xiàng)是錯(cuò)誤的?()A.支持精確一次的語義保證B.具有低延遲的處理能力C.對(duì)批處理的支持不如流處理D.能夠?qū)崿F(xiàn)狀態(tài)管理和容錯(cuò)恢復(fù)15、大數(shù)據(jù)分析中的機(jī)器學(xué)習(xí)算法能夠幫助發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和規(guī)律。以下關(guān)于機(jī)器學(xué)習(xí)在大數(shù)據(jù)中的應(yīng)用,哪項(xiàng)描述不準(zhǔn)確?()A.可以使用監(jiān)督學(xué)習(xí)算法進(jìn)行分類和預(yù)測,如預(yù)測客戶流失、商品銷量等B.無監(jiān)督學(xué)習(xí)算法可用于數(shù)據(jù)聚類、異常檢測等任務(wù)C.強(qiáng)化學(xué)習(xí)在大數(shù)據(jù)分析中的應(yīng)用較少,因?yàn)槠鋵?duì)數(shù)據(jù)量和計(jì)算資源要求過高D.深度學(xué)習(xí)算法,如卷積神經(jīng)網(wǎng)絡(luò),在圖像、語音等大數(shù)據(jù)處理中表現(xiàn)出色16、在大數(shù)據(jù)隱私保護(hù)中,同態(tài)加密是一種有潛力的技術(shù)。以下關(guān)于同態(tài)加密的描述,哪一項(xiàng)是錯(cuò)誤的?()A.同態(tài)加密允許在密文上進(jìn)行特定的計(jì)算操作B.同態(tài)加密能夠在不解密的情況下獲得計(jì)算結(jié)果C.同態(tài)加密的計(jì)算效率通常很高D.同態(tài)加密可以用于保護(hù)數(shù)據(jù)在計(jì)算過程中的隱私17、大數(shù)據(jù)處理框架有很多,如Hadoop、Spark等。以下關(guān)于Hadoop和Spark的比較,哪一項(xiàng)是不正確的?()A.Spark相比Hadoop在內(nèi)存計(jì)算方面具有優(yōu)勢(shì),處理速度更快B.Hadoop更適合處理大規(guī)模的靜態(tài)數(shù)據(jù),而Spark更適合處理實(shí)時(shí)流數(shù)據(jù)C.Hadoop的生態(tài)系統(tǒng)比Spark更豐富和成熟D.Spark可以在Hadoop的YARN上運(yùn)行18、數(shù)據(jù)倉庫是大數(shù)據(jù)存儲(chǔ)和分析的重要工具,以下關(guān)于數(shù)據(jù)倉庫的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)倉庫用于存儲(chǔ)歷史數(shù)據(jù),以便進(jìn)行數(shù)據(jù)分析和決策支持B.數(shù)據(jù)倉庫中的數(shù)據(jù)通常是經(jīng)過清洗和轉(zhuǎn)換的高質(zhì)量數(shù)據(jù)C.數(shù)據(jù)倉庫可以支持聯(lián)機(jī)事務(wù)處理(OLTP)和聯(lián)機(jī)分析處理(OLAP)D.數(shù)據(jù)倉庫中的數(shù)據(jù)通常按照主題進(jìn)行組織19、在構(gòu)建大數(shù)據(jù)處理架構(gòu)時(shí),需要考慮計(jì)算資源的分配和管理。以下哪種技術(shù)可以實(shí)現(xiàn)資源的動(dòng)態(tài)分配和優(yōu)化?()A.虛擬化技術(shù)B.容器技術(shù)C.云計(jì)算平臺(tái)D.以上都是20、在大數(shù)據(jù)分析中,數(shù)據(jù)清洗是一個(gè)關(guān)鍵的步驟。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在一些缺失值和錯(cuò)誤數(shù)據(jù)。以下關(guān)于數(shù)據(jù)清洗方法的選擇,正確的是:()A.對(duì)于缺失值,直接刪除包含缺失值的記錄,以保證數(shù)據(jù)的完整性B.對(duì)于錯(cuò)誤數(shù)據(jù),通過手動(dòng)檢查和修正來確保數(shù)據(jù)的準(zhǔn)確性C.利用統(tǒng)計(jì)方法填充缺失值,并使用機(jī)器學(xué)習(xí)算法檢測和糾正錯(cuò)誤數(shù)據(jù)D.忽略所有的缺失值和錯(cuò)誤數(shù)據(jù),直接進(jìn)行后續(xù)的分析21、大數(shù)據(jù)的處理往往涉及到多個(gè)階段的工作流。假設(shè)一個(gè)大數(shù)據(jù)處理項(xiàng)目包括數(shù)據(jù)采集、清洗、分析和可視化等階段。以下哪種工作流管理工具最能有效地協(xié)調(diào)和監(jiān)控這些階段的執(zhí)行?()A.ApacheAirflowB.ApacheOozieC.LuigiD.以上工具都可以22、在大數(shù)據(jù)分析中,數(shù)據(jù)可視化能夠幫助我們更好地理解數(shù)據(jù)。如果要展示不同地區(qū)的銷售額占比情況,以下哪種可視化圖表最合適?()A.折線圖B.餅圖C.柱狀圖D.雷達(dá)圖23、在大數(shù)據(jù)分析中,為了挖掘數(shù)據(jù)中的潛在模式和趨勢(shì),以下哪種方法經(jīng)常被使用?()A.關(guān)聯(lián)分析B.序列模式挖掘C.時(shí)間序列分析D.以上都是24、在進(jìn)行大數(shù)據(jù)可視化時(shí),需要選擇合適的圖表類型來有效地呈現(xiàn)數(shù)據(jù)。假設(shè)有一個(gè)數(shù)據(jù)集,展示了不同地區(qū)在一年中每個(gè)月的銷售額變化情況。以下哪種可視化方式最適合?()A.餅圖,用于展示各地區(qū)銷售額的占比B.折線圖,清晰呈現(xiàn)銷售額隨時(shí)間的變化趨勢(shì)C.柱狀圖,對(duì)比不同地區(qū)在每個(gè)月的銷售額D.散點(diǎn)圖,分析銷售額與其他因素的關(guān)系25、大數(shù)據(jù)的處理通常需要分布式計(jì)算框架來提高效率。假設(shè)有一個(gè)需要對(duì)海量文本數(shù)據(jù)進(jìn)行詞頻統(tǒng)計(jì)的任務(wù),數(shù)據(jù)量達(dá)到數(shù)百TB。以下哪種分布式計(jì)算框架最適合處理這種大規(guī)模的數(shù)據(jù)處理任務(wù)?()A.HadoopMapReduceB.SparkC.FlinkD.Storm26、在大數(shù)據(jù)項(xiàng)目中,數(shù)據(jù)遷移是一個(gè)常見的任務(wù)。假設(shè)要將大量數(shù)據(jù)從一個(gè)舊的存儲(chǔ)系統(tǒng)遷移到新的存儲(chǔ)系統(tǒng),以下哪種策略可能不太可行?()A.一次性全部遷移B.分批次逐步遷移C.先遷移近期使用的數(shù)據(jù),再遷移歷史數(shù)據(jù)D.隨機(jī)選擇部分?jǐn)?shù)據(jù)進(jìn)行遷移27、在進(jìn)行大數(shù)據(jù)分析時(shí),經(jīng)常需要對(duì)數(shù)據(jù)進(jìn)行采樣。以下關(guān)于數(shù)據(jù)采樣的描述,正確的是?()A.隨機(jī)采樣可以保證樣本的代表性B.分層采樣適用于數(shù)據(jù)分布均勻的情況C.采樣會(huì)導(dǎo)致數(shù)據(jù)信息的丟失,應(yīng)盡量避免D.系統(tǒng)采樣比隨機(jī)采樣更準(zhǔn)確28、在進(jìn)行大數(shù)據(jù)項(xiàng)目時(shí),需要進(jìn)行數(shù)據(jù)治理。以下關(guān)于數(shù)據(jù)治理的描述,哪一項(xiàng)是不正確的?()A.數(shù)據(jù)治理包括制定數(shù)據(jù)策略、數(shù)據(jù)標(biāo)準(zhǔn)和數(shù)據(jù)管理流程B.數(shù)據(jù)治理可以確保數(shù)據(jù)的質(zhì)量、一致性和可用性C.數(shù)據(jù)治理是一次性的工作,完成后無需再關(guān)注D.數(shù)據(jù)治理需要跨部門的協(xié)作和溝通29、在大數(shù)據(jù)環(huán)境中,為了實(shí)現(xiàn)數(shù)據(jù)的高效存儲(chǔ)和檢索,以下哪種數(shù)據(jù)結(jié)構(gòu)經(jīng)常被用于索引?()A.B+樹B.紅黑樹C.AVL樹D.跳表30、在大數(shù)據(jù)存儲(chǔ)方面,分布式文件系統(tǒng)被廣泛應(yīng)用。假設(shè)一個(gè)公司有海量的圖像數(shù)據(jù)需要存儲(chǔ)和訪問,考慮使用Hadoop的HDFS作為存儲(chǔ)解決方案。以下關(guān)于HDFS的特點(diǎn),哪一項(xiàng)是不正確的?()A.適合存儲(chǔ)大規(guī)模數(shù)據(jù),具有高容錯(cuò)性B.數(shù)據(jù)存儲(chǔ)在多個(gè)節(jié)點(diǎn)上,提高了數(shù)據(jù)的可靠性C.可以支持隨機(jī)讀寫操作,具有很高的讀寫性能D.采用主從架構(gòu),NameNode負(fù)責(zé)管理文件系統(tǒng)的元數(shù)據(jù)二、編程題(本大題共5個(gè)小題,共25分)1、(本題5分)給定一個(gè)包含社交媒體用戶發(fā)布圖片數(shù)據(jù)的數(shù)據(jù)集,使用圖像分析技術(shù)提取圖片的主題和情感傾向。2、(本題5分)使用Hive對(duì)一個(gè)大規(guī)模的用戶搜索關(guān)鍵詞數(shù)據(jù)集進(jìn)行語義分析,找出相關(guān)的搜索意圖和需求。3、(本題5分)有一個(gè)包含城市公共交通刷卡數(shù)據(jù)的文件,使用SQL語句和相關(guān)數(shù)據(jù)庫操作,找出客流量最大的公交線路和對(duì)應(yīng)的客流量。4、(本題5分)使用Python的機(jī)器學(xué)習(xí)庫,對(duì)一個(gè)包含用戶手機(jī)使用行為數(shù)據(jù)的數(shù)據(jù)集進(jìn)行用戶行為預(yù)測,如通話時(shí)長、流量使用等。5、(本題5分)利用Python語言和TensorFlow框架,構(gòu)建一個(gè)自動(dòng)編碼器(Autoencoder),對(duì)大規(guī)模的圖像數(shù)據(jù)進(jìn)行壓縮和重構(gòu)。三、簡答題(本大題共5個(gè)小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論