




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
…………○…………內…………○…○…………內…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年粵教版高二數學上冊階段測試試卷含答案考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四五總分得分評卷人得分一、選擇題(共6題,共12分)1、已知三個數3;x+2,27成等比數列,則x=()
A.7;-11
B.7;-9
C.-9;0
D.-11;8
2、采用系統抽樣方法從960人中抽取32人做問卷調查,為此將他們隨機編號為1,2,,960,分組后在第一組采用簡單隨機抽樣的方法抽到的號碼為9.抽到的32人中,編號落入區間的人做問卷編號落入間的人做問卷其余的人做問卷則抽到的人中,做問卷的人數為()A.7B.9C.10D.153、直線的參數方程是A.(t為參數)B.(t為參數)C.(t為參數)D.(t為參數)4、【題文】在中,角C為最大角,且則是A.直角三角形B.銳角三角形C.鈍角三角形D.形狀不確定5、【題文】=A.B.C.2D.6、設則a1+a2++a2017的值為()A.﹣1B.﹣2C.1D.2評卷人得分二、填空題(共6題,共12分)7、不等式<3的解為____.8、:已知函數則____。9、【題文】(不等式選講選做題)若存在實數滿足則實數的取值范圍為_________.10、【題文】已知圓直線圓上的點到直線的距離小于2的概率為____.11、已知直線與曲線切于點則b的值為____.12、曲線y=ex在點A(0,1)處的切線斜率為____.評卷人得分三、作圖題(共9題,共18分)13、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
14、A是銳角MON內部任意一點,在∠MON的兩邊OM,ON上各取一點B,C,組成三角形,使三角形周長最小.(如圖所示)15、已知,A,B在直線l的兩側,在l上求一點,使得PA+PB最小.(如圖所示)16、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
17、A是銳角MON內部任意一點,在∠MON的兩邊OM,ON上各取一點B,C,組成三角形,使三角形周長最小.(如圖所示)18、已知,A,B在直線l的兩側,在l上求一點,使得PA+PB最小.(如圖所示)19、分別畫一個三棱錐和一個四棱臺.評卷人得分四、計算題(共4題,共40分)20、如圖,正三角形ABC的邊長為2,M是BC邊上的中點,P是AC邊上的一個動點,求PB+PM的最小值.21、設L為曲線C:y=在點(1,0)處的切線.求L的方程;22、已知f(x)=∫1x(4t3﹣)dt,求f(1﹣i)?f(i).23、已知z1=5+10i,z2=3﹣4i,求z.評卷人得分五、綜合題(共4題,共28分)24、(2009?新洲區校級模擬)如圖,已知直角坐標系內有一條直線和一條曲線,這條直線和x軸、y軸分別交于點A和點B,且OA=OB=1.這條曲線是函數y=的圖象在第一象限的一個分支,點P是這條曲線上任意一點,它的坐標是(a、b),由點P向x軸、y軸所作的垂線PM、PN,垂足是M、N,直線AB分別交PM、PN于點E、F.則AF?BE=____.25、如圖,在直角坐標系中,點A,B,C的坐標分別為(-1,0),(3,0),(0,3),過AB,C三點的拋物的對稱軸為直線l,D為對稱軸l上一動點.
(1)求拋物線的解析式;
(2)求當AD+CD最小時點D的坐標;
(3)以點A為圓心;以AD為半徑作⊙A.
①證明:當AD+CD最小時;直線BD與⊙A相切;
②寫出直線BD與⊙A相切時,D點的另一個坐標:____.26、(2015·安徽)設橢圓E的方程為+=1(ab0),點O為坐標原點,點A的坐標為(a,0),點B的坐標為(0,b),點M在線段AB上,滿足=2直線OM的斜率為27、已知Sn為等差數列{an}的前n項和,S6=51,a5=13.參考答案一、選擇題(共6題,共12分)1、A【分析】
∵三個數3,x+2,27成等比數列,∴(x+2)2=3×27;
解得x=7;或x=-11.
故選:A.
【解析】【答案】直接利用等比數列的定義得到(x+2)2=3×27;解方程求得x的值.
2、C【分析】【解析】試題分析:因為由已知可知,共有960人,抽取32人作為調查,那么間隔為960:32=30,那么第一組采用簡單隨機抽樣的方法抽到的號碼為9,那么第二組的號碼為39,依次為69,99,構成了等差數列,公差為30,首項為9,那么可知其號碼的規律為30n-21。因此當45130n-21750,解得n的范圍16n25,共有10人,那么選C.考點:本試題考查了系統抽樣方法的運用。【解析】【答案】C3、C【分析】對于C,x,y的取值集合都是R,消參后普通方程為因而應選C.【解析】【答案】C4、B【分析】【解析】
試題分析:由余弦定理可知為銳角,又因為C為最大角,故是銳角三角形.
考點:本小題考查了余弦定理.
點評:利用余弦定理判斷三角形的形狀,研究最大角的余弦值的符號即可判定其形狀.易錯點:最大角判斷錯誤.【解析】【答案】B5、C【分析】【解析】略【解析】【答案】C6、A【分析】【解答】解:令x=﹣2時,(4﹣3)(﹣4+3)2015=a0,即a0=﹣1,令x=﹣1時,(1﹣3)(﹣2+3)2015=a0+a1+a2++a2017;
∴a0+a1+a2++a2017=﹣2;
∴a1+a2++a2017=﹣1;
故選:A
【分析】先令x=﹣2求出a0的值,再令x=﹣1時,即可求出a1+a2++a2017的值.二、填空題(共6題,共12分)7、略
【分析】
由<3;
移項得:-3<0,即即
等價于:x(x-)>0
解得:x>或x<0.
則原不等式的解集為.
故答案為:.
【解析】【答案】把不等式的左邊移項到右邊,通分并利用分式的減法法則計算后,得到x與x-同號;根據不等式取解集的方法即可求出原不等式的解集.
8、略
【分析】【解析】
因為【解析】【答案】____9、略
【分析】【解析】利用絕對值的三角不等式得。
所以
依題意,
從而解得【解析】【答案】10、略
【分析】【解析】
試題分析:圓心到直線的距離為那么與直線距離為2且與圓相交的直線的方程為設與圓相交于點則因此所求概率為
考點:幾何概型.【解析】【答案】11、3【分析】【解答】【分析】點直線上,代入求得k=2,直線與曲線切于點故當x=1,=2,又3=1+a+b,解得a=-1,b=3.
【分析】函數在某一點的導數值是該點切線的斜率,這就是導數的幾何意義。利用待定系數法求解12、1【分析】【解答】解:由題意得,y′=ex,則在點A(0,1)處的切線斜率k=e0=1;
故答案為:1.
【分析】先求出導數,再把x=0代入求值.三、作圖題(共9題,共18分)13、略
【分析】【分析】根據軸對稱的性質作出B點與河面的對稱點B′,連接AB′,AB′與河面的交點C即為所求.【解析】【解答】解:作B點與河面的對稱點B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對稱的性質可知AB′=AC+BC;
根據兩點之間線段最短的性質可知;C點即為所求.
14、略
【分析】【分析】作出A關于OM的對稱點A',關于ON的A對稱點A'',連接A'A'',根據兩點之間線段最短即可判斷出使三角形周長最小的A、B的值.【解析】【解答】解:作A關于OM的對稱點A';關于ON的A對稱點A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關于OM對稱;A與A″關于ON對稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據兩點之間線段最短,A'A''為△ABC的最小值.15、略
【分析】【分析】顯然根據兩點之間,線段最短,連接兩點與直線的交點即為所求作的點.【解析】【解答】解:連接兩點與直線的交點即為所求作的點P;
這樣PA+PB最小;
理由是兩點之間,線段最短.16、略
【分析】【分析】根據軸對稱的性質作出B點與河面的對稱點B′,連接AB′,AB′與河面的交點C即為所求.【解析】【解答】解:作B點與河面的對稱點B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對稱的性質可知AB′=AC+BC;
根據兩點之間線段最短的性質可知;C點即為所求.
17、略
【分析】【分析】作出A關于OM的對稱點A',關于ON的A對稱點A'',連接A'A'',根據兩點之間線段最短即可判斷出使三角形周長最小的A、B的值.【解析】【解答】解:作A關于OM的對稱點A';關于ON的A對稱點A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關于OM對稱;A與A″關于ON對稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據兩點之間線段最短,A'A''為△ABC的最小值.18、略
【分析】【分析】顯然根據兩點之間,線段最短,連接兩點與直線的交點即為所求作的點.【解析】【解答】解:連接兩點與直線的交點即為所求作的點P;
這樣PA+PB最小;
理由是兩點之間,線段最短.19、解:畫三棱錐可分三步完成。
第一步:畫底面﹣﹣畫一個三角形;
第二步:確定頂點﹣﹣在底面外任一點;
第三步:畫側棱﹣﹣連接頂點與底面三角形各頂點.
畫四棱可分三步完成。
第一步:畫一個四棱錐;
第二步:在四棱錐一條側棱上取一點;從這點開始,順次在各個面內畫與底面對應線段平行的線段;
第三步:將多余線段擦去.
【分析】【分析】畫三棱錐和畫四棱臺都是需要先畫底面,再確定平面外一點連接這點與底面上的頂點,得到錐體,在畫四棱臺時,在四棱錐一條側棱上取一點,從這點開始,順次在各個面內畫與底面對應線段平行的線段,將多余線段擦去,得到圖形.四、計算題(共4題,共40分)20、略
【分析】【分析】作點B關于AC的對稱點E,連接EP、EB、EM、EC,則PB+PM=PE+PM,因此EM的長就是PB+PM的最小值.【解析】【解答】解:如圖;作點B關于AC的對稱點E,連接EP;EB、EM、EC;
則PB+PM=PE+PM;
因此EM的長就是PB+PM的最小值.
從點M作MF⊥BE;垂足為F;
因為BC=2;
所以BM=1,BE=2=2.
因為∠MBF=30°;
所以MF=BM=,BF==,ME==.
所以PB+PM的最小值是.21、解:所以當x=1時,k=點斜式得直線方程為y=x-1【分析】【分析】函數的導數這是導函數的除法運算法則22、解:f(x)=(t4+)|1x=x4+﹣2f(1﹣i)=(1﹣i)4+﹣2=+
f(i)=i4+﹣2=﹣1﹣i
f(1﹣i)f(i)=6+5i【分析】【分析】先根據定積分求出函數f(x)的解析式,然后分別求出f(1﹣i)與f(i)即可求出所求.23、解:∴
又∵z1=5+10i,z2=3﹣4i
∴【分析】【分析】把z1、z2代入關系式,化簡即可五、綜合題(共4題,共28分)24、略
【分析】【分析】根據OA=OB,得到△AOB是等腰直角三角形,則△NBF也是等腰直角三角形,由于P的縱坐標是b,因而F點的縱坐標是b,即FM=b,則得到AF=b,同理BE=a,根據(a,b)是函數y=的圖象上的點,因而b=,ab=,則即可求出AF?BE.【解析】【解答】解:∵P的坐標為(a,);且PN⊥OB,PM⊥OA;
∴N的坐標為(0,);M點的坐標為(a,0);
∴BN=1-;
在直角三角形BNF中;∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形);
∴NF=BN=1-;
∴F點的坐標為(1-,);
∵OM=a;
∴AM=1-a;
∴EM=AM=1-a;
∴E點的坐標為(a;1-a);
∴AF2=(-)2+()2=,BE2=(a)2+(-a)2=2a2;
∴AF?BE=1.
故答案為:1.25、略
【分析】【分析】(1)由待定系數法可求得拋物線的解析式.
(2)連接BC;交直線l于點D,根據拋物線對稱軸的性質,點B與點A關于直線l對稱,∴AD=BD.
∴AD+CD=BD+CD;由“兩點之間,線段最短”的原理可知:D在直線BC上AD+CD最短,所以D是直線l與直線BC的交點;
設出直線BC的解析式為y=kx+b;可用待定系數法求得BC直線的解析式,故可求得BC與直線l的交點D的坐標.
(3)由(2)可知,當AD+CD最短時,D在直線BC上,由于已知A,B,C,D四點坐標,根據線段之間的長度,可以求出△ABD是直角三角形,即BC與圓相切.由于AB⊥l,故由垂徑定理知及切線長定理知,另一點D與現在的點D關于x軸對稱,所以另一點D的坐標為(1,-2).【解析】【解答】解:
(1)設拋物線的解析式為y=a(x+1)(x-3).(1分)
將(0;3)代入上式,得3=a(0+1)(0-3).
解;得a=-1.(2分)∴拋物線的解析式為y=-(x+1)(x-3).
即y=-x2+2x+3.(3分)
(2)連接BC;交直線l于點D.
∵點B與點A關于直線l對稱;
∴AD=BD.(4分)
∴AD+CD=BD+CD=BC.
由“兩點之間;線段最短”的原理可知:
此時AD+CD最小;點D的位置即為所求.(5分)
設直線BC的解析式為y=kx+b;
由直線BC過點(3;0),(0,3);
得
解這個方程組,得
∴直線BC的解析式為y=-x+3.(6分)
由(1)知:對稱軸l為;即x=1.
將x=1代入y=-x+3;得y=-1+3=2.
∴點D的坐標為(1;2).(7分)
說明:用相似三角形或三角函數求點D的坐標也可;答案正確給(2分).
(3)①連接AD.設直線l與x軸的交點記為點E.
由(2)知:當AD+CD最小時;點D的坐標為(1,2).
∴DE=AE=BE=2.
∴∠DAB=∠DBA=45度.(8分)
∴∠ADB=90度.
∴AD⊥BD.
∴BD與⊙A相切.(9分)
②∵另一點D與D(1;2)關于x軸對稱;
∴D(1,-2).(11分)26、(1){#mathml#}255
{#/mathml#};(2){#mathml#}x245+y29=1
{#/mathm
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 縮放繪圖儀企業縣域市場拓展與下沉戰略研究報告
- 真空電子器件企業數字化轉型與智慧升級戰略研究報告
- 船用救生衣企業ESG實踐與創新戰略研究報告
- 厚鋼板企業ESG實踐與創新戰略研究報告
- 2025年公司三級安全培訓考試試題帶解析答案
- 科技企業薪酬福利設計的新趨勢-全面剖析
- 2025年低溫多效海水淡化裝置合作協議書
- 量子光學與超分辨成像的結合-全面剖析
- 幸福與壓力的動態平衡機制-全面剖析
- 維修行業人才培訓體系優化-全面剖析
- 2022年四川省阿壩州中考數學試卷
- 【年產20萬噸丙烯酸工藝設計13000字(論文)】
- 分布式光伏經濟評價規范
- 軌道交通噪聲與振動控制技術研究
- 乾坤未定吾皆黑馬+高考沖刺百日誓師主題班會
- 安徽省合肥市2024屆高三第一次教學質量檢查數學試卷及答案
- 2024年四川成都地鐵運營有限公司招聘筆試參考題庫含答案解析
- 廣東省地質災害危險性評估實施細則(2023年修訂版)
- 《非稅收入征收管理》課件
- 與小三分手的協議書
- 羊水過少護理查房
評論
0/150
提交評論