安徽省滁州市明光中學2025屆高三第四次模擬考試數學試卷含解析_第1頁
安徽省滁州市明光中學2025屆高三第四次模擬考試數學試卷含解析_第2頁
安徽省滁州市明光中學2025屆高三第四次模擬考試數學試卷含解析_第3頁
安徽省滁州市明光中學2025屆高三第四次模擬考試數學試卷含解析_第4頁
安徽省滁州市明光中學2025屆高三第四次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省滁州市明光中學2025屆高三第四次模擬考試數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個數為()A.1 B.2 C.3 D.02.已知各項都為正的等差數列中,,若,,成等比數列,則()A. B. C. D.3.已知,則下列關系正確的是()A. B. C. D.4.函數f(x)=lnA. B. C. D.5.設全集,集合,則=()A. B. C. D.6.已知函數滿足,設,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數字按照任意次序排成一行,拼成一個6位數,則產生的不同的6位數的個數為A.96 B.84 C.120 D.3608.若函數在處取得極值2,則()A.-3 B.3 C.-2 D.29.如圖在直角坐標系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機選取一點,則它在陰影部分的概率為()A. B. C. D.10.若集合,,則()A. B. C. D.11.已知集合,,,則集合()A. B. C. D.12.已知是偶函數,在上單調遞減,,則的解集是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知內角的對邊分別為外接圓的面積為,則的面積為_________.14.已知各棱長都相等的直三棱柱(側棱與底面垂直的棱柱稱為直棱柱)所有頂點都在球的表面上.若球的表面積為則該三棱柱的側面積為___________.15.四邊形中,,,,,則的最小值是______.16.在平面直角坐標系中,雙曲線的焦距為,若過右焦點且與軸垂直的直線與兩條漸近線圍成的三角形面積為,則雙曲線的離心率為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)的內角、、所對的邊長分別為、、,已知.(1)求的值;(2)若,點是線段的中點,,求的面積.18.(12分)已知點P在拋物線上,且點P的橫坐標為2,以P為圓心,為半徑的圓(O為原點),與拋物線C的準線交于M,N兩點,且.(1)求拋物線C的方程;(2)若拋物線的準線與y軸的交點為H.過拋物線焦點F的直線l與拋物線C交于A,B,且,求的值.19.(12分)已知函數(),不等式的解集為.(1)求的值;(2)若,,,且,求的最大值.20.(12分)已知點、分別在軸、軸上運動,,.(1)求點的軌跡的方程;(2)過點且斜率存在的直線與曲線交于、兩點,,求的取值范圍.21.(12分)在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)寫出直線的普通方程和曲線的直角坐標方程;(2)設直線與曲線相交于兩點,的頂點也在曲線上運動,求面積的最大值.22.(10分)在直角坐標平面中,已知的頂點,,為平面內的動點,且.(1)求動點的軌跡的方程;(2)設過點且不垂直于軸的直線與交于,兩點,點關于軸的對稱點為,證明:直線過軸上的定點.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個數.【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個數為3.故選:C.【點睛】本小題主要考查由三視圖還原為原圖,屬于基礎題.2、A【解析】試題分析:設公差為或(舍),故選A.考點:等差數列及其性質.3、A【解析】

首先判斷和1的大小關系,再由換底公式和對數函數的單調性判斷的大小即可.【詳解】因為,,,所以,綜上可得.故選:A【點睛】本題考查了換底公式和對數函數的單調性,考查了推理能力與計算能力,屬于基礎題.4、C【解析】因為fx=lnx2-4x+4x-23=5、A【解析】

先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.【點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎題.6、B【解析】

結合函數的對應性,利用充分條件和必要條件的定義進行判斷即可.【詳解】解:若,則,即成立,若,則由,得,則“”是“”的必要不充分條件,故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結合函數的對應性是解決本題的關鍵,屬于基礎題.7、B【解析】

2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數共個,其中含有2個10的排列數共個,所以產生的不同的6位數的個數為.故選B.8、A【解析】

對函數求導,可得,即可求出,進而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.【點睛】本題考查了函數的導數與極值,考查了學生的運算求解能力,屬于基礎題.9、A【解析】

設所求切線的方程為,聯立,消去得出關于的方程,可得出,求出的值,進而求得切點的坐標,利用定積分求出陰影部分區域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設所求切線的方程為,則,聯立,消去得①,由,解得,方程①為,解得,則點,所以,陰影部分區域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點睛】本題考查定積分的計算以及幾何概型,同時也涉及了二次函數的切線方程的求解,考查計算能力,屬于中等題.10、B【解析】

根據正弦函數的性質可得集合A,由集合性質表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關系的判斷與應用,集合的包含關系與補集關系的應用,屬于中檔題.11、D【解析】

根據集合的混合運算,即可容易求得結果.【詳解】,故可得.故選:D.【點睛】本題考查集合的混合運算,屬基礎題.12、D【解析】

先由是偶函數,得到關于直線對稱;進而得出單調性,再分別討論和,即可求出結果.【詳解】因為是偶函數,所以關于直線對稱;因此,由得;又在上單調遞減,則在上單調遞增;所以,當即時,由得,所以,解得;當即時,由得,所以,解得;因此,的解集是.【點睛】本題主要考查由函數的性質解對應不等式,熟記函數的奇偶性、對稱性、單調性等性質即可,屬于??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內角,從而有,于是可得三角形邊長,可得面積.【詳解】設外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.【點睛】本題考查正弦定理,利用正弦定理求出三角形的內角,然后可得邊長,從而得面積,掌握正弦定理是解題關鍵.14、【解析】

只要算出直三棱柱的棱長即可,在中,利用即可得到關于x的方程,解方程即可解決.【詳解】由已知,,解得,如圖所示,設底面等邊三角形中心為,直三棱柱的棱長為x,則,,故,即,解得,故三棱柱的側面積為.故答案為:.【點睛】本題考查特殊柱體的外接球問題,考查學生的空間想象能力,是一道中檔題.15、【解析】

在中利用正弦定理得出,進而可知,當時,取最小值,進而計算出結果.【詳解】,如圖,在中,由正弦定理可得,即,故當時,取到最小值為.故答案為:.【點睛】本題考查解三角形,同時也考查了常見的三角函數值,考查邏輯推理能力與計算能力,屬于中檔題.16、【解析】

利用即可建立關于的方程.【詳解】設雙曲線右焦點為,過右焦點且與軸垂直的直線與兩條漸近線分別交于兩點,則,,由已知,,即,所以,離心率.故答案為:【點睛】本題考查求雙曲線的離心率,做此類題的關鍵是建立的方程或不等式,是一道容易題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用正弦定理的邊化角公式,結合兩角和的正弦公式,即可得出的值;(2)由題意得出,兩邊平方,化簡得出,根據三角形面積公式,即可得出結論.【詳解】(1)由正弦定理得即即在中,,所以(2)因為點是線段的中點,所以兩邊平方得由得整理得,解得或(舍)所以的面積【點睛】本題主要考查了正弦定理的邊化角公式,三角形的面積公式,屬于中檔題.18、(1)(2)4【解析】

(1)將點P橫坐標代入拋物線中求得點P的坐標,利用點P到準線的距離d和勾股定理列方程求出p的值即可;(2)設A、B點坐標以及直線AB的方程,代入拋物線方程,利用根與系數的關系,以及垂直關系,得出關系式,計算的值即可.【詳解】(1)將點P橫坐標代入中,求得,∴P(2,),,點P到準線的距離為,∴,∴,解得,∴,∴拋物線C的方程為:;(2)拋物線的焦點為F(0,1),準線方程為,;設,直線AB的方程為,代入拋物線方程可得,∴,…①由,可得,又,,∴,∴,即,∴,…②把①代入②得,,則.【點睛】本題考查直線與拋物線的位置關系,以及拋物線與圓的方程應用問題,考查轉化思想以及計算能力,是中檔題.19、(1)(2)32【解析】

利用絕對值不等式的解法求出不等式的解集,得到關于的方程,求出的值即可;由知可得,,利用三個正數的基本不等式,構造和是定值即可求出的最大值.【詳解】(1)∵,,所以不等式的解集為,即為不等式的解集為,∴的解集為,即不等式的解集為,化簡可得,不等式的解集為,所以,即.(2)∵,∴.又∵,,,∴,當且僅當,等號成立,即,,時,等號成立,∴的最大值為32.【點睛】本題主要考查含有兩個絕對值不等式的解法和三個正數的基本不等式的靈活運用;其中利用構造出和為定值即為定值是求解本題的關鍵;基本不等式取最值的條件:一正二定三相等是本題的易錯點;屬于中檔題.20、(1)(2)【解析】

(1)設坐標后根據向量的坐標運算即可得到軌跡方程.(2)聯立直線和橢圓方程,用坐標表示出,得到,所以,代入韋達定理即可求解.【詳解】(1)設,,則,設,由得.又由于,化簡得的軌跡的方程為.(2)設直線的方程為,與的方程聯立,消去得,,設,,則,,由已知,,則,故直線.,令,則,由于,,.所以,的取值范圍為.【點睛】此題考查軌跡問題,橢圓和直線相交,注意坐標表示向量進行轉化的處理技巧,屬于較難題目.21、(1):,:;(2)【解析】

(1)由直線參數方程消去參數即可得直線的普通方程,根據極坐標方程和直角坐標方程互化的公式即可得曲線的直角坐標方程;(2)由即可得的底,由點到直線的距離的最大值為即可得高的最大值,即可得解.【詳解】(1)由消去參數得直線的普通方程為,由得,曲線的直角坐標方程為;(2)曲線即,圓心到直線的距離,所以,又點到直線的距離的最大值為,所以面積的最大值為.【點睛】本題考查了參數方程、極坐標方程和直角坐標方程的互化,考查了直線與圓的位置關系,屬于中檔題.22、(1)();(2)證明見解析.【解析】

(1)設點,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論