




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省高中學2025屆高考數學倒計時模擬卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②2.運行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.20173.高三珠海一模中,經抽樣分析,全市理科數學成績X近似服從正態分布,且.從中隨機抽取參加此次考試的學生500名,估計理科數學成績不低于110分的學生人數約為()A.40 B.60 C.80 D.1004.體育教師指導4個學生訓練轉身動作,預備時,4個學生全部面朝正南方向站成一排.訓練時,每次都讓3個學生“向后轉”,若4個學生全部轉到面朝正北方向,則至少需要“向后轉”的次數是()A.3 B.4 C.5 D.65.已知雙曲線的左右焦點分別為,,以線段為直徑的圓與雙曲線在第二象限的交點為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.6.若復數滿足,則()A. B. C.2 D.7.已知是雙曲線的左、右焦點,若點關于雙曲線漸近線的對稱點滿足(為坐標原點),則雙曲線的漸近線方程為()A. B. C. D.8.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題9.設f(x)是定義在R上的偶函數,且在(0,+∞)單調遞減,則()A. B.C. D.10.已知等差數列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.11.高斯是德國著名的數學家,近代數學奠基者之一,享有“數學王子”的稱號,用其名字命名的“高斯函數”為:設,用表示不超過的最大整數,則稱為高斯函數,例如:,,已知函數(),則函數的值域為()A. B. C. D.12.已知橢圓的右焦點為F,左頂點為A,點P橢圓上,且,若,則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知兩個單位向量滿足,則向量與的夾角為_____________.14.在的展開式中,各項系數之和為,則展開式中的常數項為__________________.15.已知點M是曲線y=2lnx+x2﹣3x上一動點,當曲線在M處的切線斜率取得最小值時,該切線的方程為_______.16.銳角中,角,,所對的邊分別為,,,若,則的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,矩形和梯形所在的平面互相垂直,,,.(1)若為的中點,求證:平面;(2)若,求四棱錐的體積.18.(12分)已知函數.(1)討論的單調性;(2)若函數在上存在兩個極值點,,且,證明.19.(12分)在中,角,,的對邊分別為,,,已知.(1)若,,成等差數列,求的值;(2)是否存在滿足為直角?若存在,求的值;若不存在,請說明理由.20.(12分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規則如下:抽獎者擲各面標有點數的正方體骰子次,若擲得點數大于,則可繼續在抽獎箱中抽獎;否則獲得三等獎,結束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎者從箱中任意摸出個球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數學期望不超過元,求的最小值.21.(12分)已知函數()在定義域內有兩個不同的極值點.(1)求實數的取值范圍;(2)若有兩個不同的極值點,,且,若不等式恒成立.求正實數的取值范圍.22.(10分)已知關于的不等式解集為().(1)求正數的值;(2)設,且,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側面時.【詳解】①當直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.2、D【解析】
依次運行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環.輸出1.選D.3、D【解析】
由正態分布的性質,根據題意,得到,求出概率,再由題中數據,即可求出結果.【詳解】由題意,成績X近似服從正態分布,則正態分布曲線的對稱軸為,根據正態分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數學成績不低于110分的人數為人,故選:.【點睛】本題考查正態分布的圖象和性質,考查學生分析問題的能力,難度容易.4、B【解析】
通過列舉法,列舉出同學的朝向,然后即可求出需要向后轉的次數.【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態第1次“向后轉”第2次“向后轉”第3次“向后轉”第4次“向后轉”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數為4次.故選:B.【點睛】本題考查的是求最小推理次數,一般這類題型構造較為巧妙,可通過列舉的方法直觀感受,屬于基礎題.5、B【解析】
先設直線與圓相切于點,根據題意,得到,再由,根據勾股定理求出,從而可得漸近線方程.【詳解】設直線與圓相切于點,因為是以圓的直徑為斜邊的圓內接三角形,所以,又因為圓與直線的切點為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【點睛】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質即可,屬于常考題型.6、D【解析】
把已知等式變形,利用復數代數形式的乘除運算化簡,再由復數模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復數代數形式的乘除運算,考查復數模的求法.7、B【解析】
先利用對稱得,根據可得,由幾何性質可得,即,從而解得漸近線方程.【詳解】如圖所示:由對稱性可得:為的中點,且,所以,因為,所以,故而由幾何性質可得,即,故漸近線方程為,故選B.【點睛】本題考查了點關于直線對稱點的知識,考查了雙曲線漸近線方程,由題意得出是解題的關鍵,屬于中檔題.8、D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.9、D【解析】
利用是偶函數化簡,結合在區間上的單調性,比較出三者的大小關系.【詳解】是偶函數,,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數的奇偶性和單調性比較大小,屬于基礎題.10、C【解析】
首先求出等差數列的首先和公差,然后寫出數列即可觀察到滿足的i的取值集合.【詳解】設公差為d,由題知,,解得,,所以數列為,故.故選:C.【點睛】本題主要考查了等差數列的基本量的求解,屬于基礎題.11、B【解析】
利用換元法化簡解析式為二次函數的形式,根據二次函數的性質求得的取值范圍,由此求得的值域.【詳解】因為(),所以,令(),則(),函數的對稱軸方程為,所以,,所以,所以的值域為.故選:B【點睛】本小題考查函數的定義域與值域等基礎知識,考查學生分析問題,解決問題的能力,運算求解能力,轉化與化歸思想,換元思想,分類討論和應用意識.12、C【解析】
不妨設在第一象限,故,根據得到,解得答案.【詳解】不妨設在第一象限,故,,即,即,解得,(舍去).故選:.【點睛】本題考查了橢圓的離心率,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點睛】本題主要考查平面向量的數量積的計算和夾角的計算,意在考查學生對這些知識的理解掌握水平.14、【解析】
利用展開式各項系數之和求得的值,由此寫出展開式的通項,令指數為零求得參數的值,代入通項計算即可得解.【詳解】的展開式各項系數和為,得,所以,的展開式通項為,令,得,因此,展開式中的常數項為.故答案為:.【點睛】本題考查二項展開式中常數項的計算,涉及二項展開式中各項系數和的計算,考查計算能力,屬于基礎題.15、【解析】
先求導數可得切線斜率,利用基本不等式可得切點橫坐標,從而可得切線方程.【詳解】,,=1時有最小值1,此時M(1,﹣2),故切線方程為:,即.故答案為:.【點睛】本題主要考查導數的幾何意義,切點處的導數值等于切線的斜率是求解的關鍵,側重考查數學運算的核心素養.16、【解析】
由余弦定理,正弦定理得出,從而得出,推出的范圍,由余弦函數的性質得出的范圍,再利用二倍角公式化簡,即可得出答案.【詳解】由題意得由正弦定理得化簡得又為銳角三角形,則,,.故答案為【點睛】本題主要考查了正弦定理和余弦定理的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)設EC與DF交于點N,連結MN,由中位線定理可得MN∥AC,故AC∥平面MDF;(2)取CD中點為G,連結BG,EG,則可證四邊形ABGD是矩形,由面面垂直的性質得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,從而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入體積公式即可計算出體積.【詳解】(1)證明:設與交于點,連接,在矩形中,點為中點,∵為的中點,∴,又∵平面,平面,∴平面.(2)取中點為,連接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的長即為四棱錐的高,在梯形中,,∴四邊形是平行四邊形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.【點睛】求錐體的體積要充分利用多面體的截面和旋轉體的軸截面,將空間問題轉化為平面問題求解,注意求體積的一些特殊方法——分割法、補形法、等體積法.①割補法:求一些不規則幾何體的體積時,常用割補法轉化成已知體積公式的幾何體進行解決.②等積法:等積法包括等面積法和等體積法.等積法的前提是幾何圖形(或幾何體)的面積(或體積)通過已知條件可以得到,利用等積法可以用來求解幾何圖形的高或幾何體的高,特別是在求三角形的高和三棱錐的高時,這一方法回避了通過具體作圖得到三角形(或三棱錐)的高,而通過直接計算得到高的數值.18、(1)若,則在定義域內遞增;若,則在上單調遞增,在上單調遞減(2)證明見解析【解析】
(1),分,討論即可;(2)由題可得到,故只需證,,即,采用換元法,轉化為函數的最值問題來處理.【詳解】由已知,,若,則在定義域內遞增;若,則在上單調遞增,在上單調遞減.(2)由題意,對求導可得從而,是的兩個變號零點,因此下證:,即證令,即證:,對求導可得,,,因為故,所以在上單調遞減,而,從而所以在單調遞增,所以,即于是【點睛】本題考查利用導數研究函數的單調性以及證明不等式,考查學生邏輯推理能力、轉化與化歸能力,是一道有一定難度的壓軸題.19、見解析【解析】
(1)因為,,成等差數列,所以,由余弦定理可得,因為,所以,即,所以.(2)若B為直角,則,,由及正弦定理可得,所以,即,上式兩邊同時平方,可得,所以(*).又,所以,,所以,與(*)矛盾,所以不存在滿足為直角.20、;.【解析】
設顧客獲得三等獎為事件,因為顧客擲得點數大于的概率為,顧客擲得點數小于,然后抽將得三等獎的概率為,求出;由題意可知,隨機變量的可能取值為,,,相應求出概率,求出期望,化簡得,由題意可知,,即,求出的最小值.【詳解】設顧客獲得三等獎為事件,因為顧客擲得點數大于的概率為,顧客擲得點數小于,然后抽將得三等獎的概率為,所以;由題意可知,隨機變量的可能取值為,,,且,,,所以隨機變量的數學期望,,化簡得,由題意可知,,即,化簡得,因為,解得,即的最小值為.【點睛】本題主要考查概率和期望的求法,屬于常考題.21、(1);(2).【解析】
(1)求導得到有兩個不相等實根,令,計算函數單調區間得到值域,得到答案.(2),是方程的兩根,故,化簡得到,設函數,討論范圍,計算最值得到答案.【詳解】(1)由題可知有兩個不相等的實根,即:有兩個不相等實根,令,,,,;,,故在上單增,在上單減,∴.又,時,;時,,∴,即.(2)由(1)知,,是方程的兩根,∴,則因為在單減,∴,又,∴即,兩邊取對數,并整理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 熔爐內襯材料選擇與應用考核試卷
- 3-11全加器電子課件教學版
- 水產加工品安全風險管理與質量控制措施考核試卷
- 游藝用品生產項目管理與風險控制考核試卷
- 電視機制造業的售后服務體系建設考核試卷
- 滾動軸承的超聲波檢測技術考核試卷
- 遼寧省高二會考語文作文
- 教學工作參考總結高中語文教學年終工作參考總結
- 小學二年級寒假數學口算練習題
- 針刺傷的防護與應急處理 2
- 2024年吉林省吉林市中考化學真題含解析
- 地鐵運營管理
- 現場巡檢與安全檢查管理制度
- 鋼結構光伏施工方案
- 【MOOC】以案說法-中南財經政法大學 中國大學慕課MOOC答案
- 2025年中考數學一輪復習 -第六章 圓-第二節 與圓有關的位置關系
- 大學物理(一)知到智慧樹章節測試課后答案2024年秋湖南大學
- 中建質量樣板策劃實施方案
- 湖北省武漢市2025屆高三第一次模擬考試數學試卷含解析
- 2025屆新高考語文古詩文理解性默寫匯編(新高考60篇含答案)
- 《數字中國建設整體布局規劃》解讀報告
評論
0/150
提交評論